

Comparisons of $10\,{\rm TeV}$ showers

Jean-Marco Alameddine 2021-12-09

General information

- Comparison of 500 showers, initiated by 10 TeV e⁻
- ParticleCut of 5 MeV
- CORSIKA 8: radio branch, commit 22dd19d8
- PROPOSAL version 7.1.1
- No magnetic field for CORSIKA 8, minimal magnetic field for CORSIKA 7 (0.001 μT along shower axis)
- **C8**: No argon in atmosphere, Highland scattering
- **C8 Argon**: 0.9 % argon in atmosphere, Molière scattering

Longitudinal comparisons

- Most profiles agree within 5 %.
- Introducing argon lets the shower develop significantly earlier
- There is an overall lack of photons in the C8 showers

Longitudinal comparisons

- Crosses indicate median, errorbars indicate 68.2 % central quantile
- \blacksquare Agreement of particle energy per observation plane also within 5 %

Longitudinal comparisons

- Charge excess agrees within 5 %
- More charge excess in C8
- Introducing argon slightly improves agreement

Lateral comparisons

PDG code [11, -11]

- With Argon/Molière, the distributions are improving
 - → Mainly due to Molière scattering
- For the early shower development, there are already a lot of particles far away from the shower axis that are not simulated in C8!

Lateral comparisons

Lateral distribution is already off early during the shower development

Energy distribution comparisons

- With Molière, the range r < 10 m looks slightly better
- Without Molière, the range r > 10 m looks slightly better

Energy distribution comparisons

Energy distributions show interesting results around shower maximum:

- A "hump" at 0.1 GeV for particles close to the core is clearly visible
- Here, using Molière shows a clear improvement for r > 10 m
- There are still much more particles far away from the shower axis in C7

Time comparisons

PDG code [11, -11]

■ There are still significantly more late particles in C7

■ Using Molière scattering improved description of the tail of the distribution

Time comparisons

- The disagreement is most significant for particles far away from the shower axis (r > 100 m)
- However, there are more late particles in the intermediate *r* range (1 m to 100 m)
 - $\rightarrow~$ The disagreement in the time distribution is likely a consequence of the disagreement in the lateral distribution

 $p_{\rm t} \, {\rm distributions}$

PDG code [11, -11]

- Defined here as the transversal momentum in the observation plane: $p_{\rm t}=\sqrt{p_x^2+p_y^2}$
- Distribution mostly influenced by the scattering model
- Tail of distribution is described much better using Molière

$p_{\rm t} \, {\rm distributions}$

■ There is still a significant disagreement far away from the shower axis

Charge excess

- Good agreement in charge excess, also for other observation heights
- Although the lateral distribution is off, the charge excess looks compatible for all lateral bins

Overall good agreement for the particle distributions

As expected: Excess of particles in C7 far away from the shower core

For early shower development: Missing particles away from shower core become even more visible!

Charged particles, observation height 1.4 km

No asymmetries in azimuth visible for charged particle distribution

Charge excess, observation height 1.4 km

■ No asymmetries in azimuth visible for charge excess

conclusions

- Charge excess and longitudinal profiles agree within 5 %
- Argon has a significant impact on the longitudinal distribution
- The differences in the arrival times are mainly due to the differences in the lateral distributions
- We highly recommend to use Molière as a scattering model instead of Highland for future simulations
 - ightarrow However, discrepancies in the lateral profile are still visible
- There are no signs of azimuthal asymmetries visible