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Overview

Goal

To try and replace certain modules in CORSIKA with a neural network counterpart
inorder to speedup cosmic ray simulations for High energies. High energy simulations
provide a valuable window into high energy interactions not possible with current
accelerators.

Why?

Explcit Monte Carlo simulations are slow and memory intensive at high energies. Novel
techniques are needed to bypass explicit simulations.

What’s new?

Use of neural networks to avoid the explicit Monte Carlo simulations or to use the
networks to improve the quality of data with fewer or less detailed simulations
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Explicit Simulations

Time complexity of CORSIKA simulations raise approximately linearly with primary
particle energy.

Thinning (a weighted sampling method) is done to reduce particle content while
preserving shower properties to leading order.

Advantages of using neural networks

It is automatically parallelized by using standard libraries.

Automatic GPU integration.

Dimentionality Reduction (Reduction of phase space into “essential features”).
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GAN

GAN

Generative Adversarial Neural network (GANs) pit two networks against each other
inorder to generate data emulating the training data

Figure: GAN
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Attempts at GAN

Previous Attempts

CaloGAN:Simulates 3D particle showers in multilayer calorimeters
(PhysRevD.97.014021).

Precise simulation of electromagnetic calorimeter showers using a Wasserstein
Generative Adversarial Network (ArXiv: 1807.01954).

Numerous other examples from other fields of physics such as cosmology
(CosmoGAN (1706.02390), CAMELS Project).

Challenge

The challenge here is to be able to generate the intermediate tracks or some
representation of tracks - “Particle level”, rather than generate images of detector
responses - “Detector Level”.

Initial Attempts

Attempt to sample from universality distributions as a check for Monte Carlo
simulation using GANs.
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Results and lessons from GAN attempts

Results

Made a general framework for quick GAN modelling in Python.

Hyperparameter optimization with Optuna.

Results

Figure: Multidimensional plot of the hyperparameters
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Results and lessons from GAN attempts
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Figure: A particular instance of generated distribution trained with the universal distributions

Lesson

Very hard to learn the tail of the distributions because of bad samples.
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Time for a different model?

Limitations of GAN

Very hard to troubleshoot since the entire process is done in a single step.

We realized, that non-gaussian distributions are hard to generate with a single
output node. This is likely a fundamental limitation.

We dont have a fixed representation when trying to generate data at a particle level.

When is GAN useful?

We still believe there is potential in the GAN approach, when trying to generate data at
the detector level. This has been shown in numerous other works, but for our usecase,
GANs are potentially a wrong design choice as they prove to be both intractable and for
fixed representations.

What next?

There is a lot of research needed for the representation to use when using neural
networks at a particle level. We currently move away from that and decide to emulate
the shower based on the source functions given to CONEX. This fixes our representation
of the shower, and we likely need another model, which is tractable and handles source
functions simular to our understanding of physics.
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Recurrent Neural Networks

Reason

Recurrent neural networks are more suited towards generating time series data. It is
similar to our usecase of propagating through the atmosphere.

Design

We step though height and generate a table for every height.
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CONEX Inspired Framework

Goal

Use Recursive neural networks to step through the height and generate the source
function for every step

CONEX

Internally conex takes the source function at the end of the hadronic cascade and then
solves the 1D cascade equation.

Design Philosophy

We would like to do something similar to what CONEX does. We build a recursive neural
network which essentially tries to find the function f in, y(x + ∆x) = f (y(x)). which
would be the solution to the cascade equation. We will call f the stepping function from
now.
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Plans

Short term goal

We generate data by making CONEX write the intermediate steps to a file in a
purely EM cascade.

We then train the neural network with these intermediate steps and hope the neural
network can emulate the stepping function.

We chose to do this with CONEX, because EM Cascade is relatively simple and we
can get the data faster than using C8.

Challenge

Finding the right model which will enable us to do this.
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Plans

Mid Term Goal

If we are able to get the neural network to step similar to CONEX, then we are on
the right track.

Second goal, is to code a piping setup which takes slices from an actual shower from
C8 and generates the source functions.

Once we have the data and the source functions, we can train the RNN with actual
C8 data this time.

Challenge

We are moving from using aggregate data from CONEX to using individual data from
C8. We need a way to make the neural network learn from “rare data”. This is vital for
us to be able to learn about fluctuations.
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Plans

Long Term Goal

Method 1 (3D showers)
- Modify the network to generate the entire 3D distribution.

Method 2 (More complicated Showers)
- Add additional interactions into C8 and check if the RNN is able to pickup the
stepping function.
- We would need to modify the network so that we can introduce new stuff in
between.

Challenge!

Think and modify the source function (which is specialized for 1D) to be able to be
applicable for 3D and more complex showers.

Performance ?
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THANK YOU!
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