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Damage by Beam Loss

- Beam loss in an accelerator causes the the activation and the damage
on the machine components.

Field Integral of permanent magnet of ID10
demagnetized at the SPring-8 [**].
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[**] T. Hasegawa et al., “Evaluation of permanent magnet demagnetization of the
SPring-8 in-vacuum undulator by in-situ magnet measurements”, Procz. of PASJ2015,
THP023.
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Phenomena Induced by Sextupole Fields

In a ring, sextupole magnets are generally utilized for correcting the linear chromaticity.

However, the nonlinear fields of the sextupole magnets also induce the various
phenomena such as nonlinear resonances, the amplitude dependent tune and the
amplitude dependent center shift, which can reduce the injection efficiency and the
beam lifetime.

So, an optimization of the sextupole fields to enrage the stable area as much as possible
should be one of major concerns in a low emittance ring.

At the SPring-8, the optimization of the sextupole fields was performed in 2015-2016.
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Parameters

Beam / machine parameters Lattice function
Lattice Type Double-bend 80r 0.8
Circumference 1436 m 707 gg
Energy 8 GeV _ gg - 0:5 w
Stored Current 100 mA .g. 40 0-43
Natural Emittance 2.41 nm.rad = :328 gg
Momentum deviation (RMS) 0.11 % 1017 : 0.1
Betatron Tune (41.14,19.325) 09 500 1000 150((,)
Natural Chromaticity (-117,-47) s (m)

“SPring-8” = 44 x “unit cell” + 4 x “30m long straight section (LSS)”.

For installing the insertion devices (IDs), the symmetry of the lattice function is broken.
So, it becomes important to recover the stable area for electron beam to the sufficient level
by optimizing the sextupole fields.

Number of sextupole families is 18.
6 families at unit cell.
3 families at LSS-A, 3 families at LSS-B, 3 families at LSS-C, and 3 families at LSS-D. 4
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Check of Simulation Model (1/3)

In order to manifest the mechanism of the injection beam loss, the 6D symplectic
integrator code CETRA, which has been developed by Dr. H. Tanaka at SPring-8 [***],

was utilized.

[***] J. Schimizu, et al., Proc. of 13th Symp. on Accel. Sci. and Tech. Osaka, Japan (2001), pp.80-82.

Simulation conditions:

1. Quadrupole errors and skew quadrupole errors evaluated by LOCO were included.
2. COD was not included, here.

3. ID model was included [*6].

[*6] E.Forest and K.Ohmi, “Symplectic integrator for complex wiggler”, KEK Report 92-14, September 1992.

For checking the validity of simulation conditions, the tracking was performed for the
comparison with the experimental results.
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averaged inj. efficiency (%)

Check of Simulation Model (2/3)

(meas) Injection efficiency before

optimization
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The tune shift caused by closing the gap of ID19 was not corrected.




fractional tune

Check of Simulation Model (3/3)

Amplitude dependent tune in x
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ID gap was fully opened.

There were no vertical kickers for
beam diagnostic, so that there is no
result concerning the amplitude
dependent tune in y. 8
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Analyses by Tracking (1/3): Frequency Map Analysis

Frequency map in (x, v) space

Frequency map in (Q,, Q ) space
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Analyses by Tracking (2/3): Resonant Line

Resonant line estimated from
amplitude dependent tune

Amplitude dependent tune in x a
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It seems that the resonance of 3Q, = integer
is excited at the injection point. 10
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Analyses by Tracking (3/3):

Single Particle Tracking

Frequency map in (X, y) space
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It seems that there is the unstable area
around the injection point, which is caused

by the resonance of 3Q, ~ int., and that a part
of the initial beam is located at this unstable

darea.
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Strategy to Improve Injection Efficiency

There was no skew sextupole at the SPring-8, so
that the correction of 3Q = int. by skew

sextupoles was not possible.

The possible countermeasure is the separation of
the resonant point of 3Q, = int. from the injection
point by modifying the amplitude dependent
tune with the normal sextupole fields.

The linear chromaticity should be fixed at (,, &,)
=(3, 3).

The resonance should not be excited by changing
the sextupole fields.

The amplitude dependent center shift should also
be considered for suppressing the injection beam
loss.
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Set-Values for Optimizing Sextupole Fileds

Simultaneous equations Strength of nonlinear resonances

sl v o s b \ —m
: ~ int.

[****] https://www.wolfram.com

ky
coef. of linear chromaticity : Im. 0.1 0.1
coef. of resonant terms kn Q, ~ int. Re. 0.0 0.0

coef. of amp. dependent center shift kf = set—values Im. 0.0 0.0
coef. of amp. dependent tune : i
kik; 3Q, ~ int. Re. -0.1 -0.1
\ : / Im. 8.8 7.7
kn

° e o Qx + 2Qy ~ int- Re- '7-4 '5-4
Linear chromaticity

— Im. 6.1  -4.5
-_ ore m Q,-2Q, ~int. Re. 449  -39.5

(Ew &) (3,3) (3,3) Im. 10.5 9.3
Coefficients of amplitude dependent tune Amplitude dependent center shift
T betore | _ater e etore | after
Oty -7310 L <x> (Jy) -1049  -1237
1241 -1241
ey <x> (Jy) 183 -327

Olyy -1553 0 .
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The evaluated sextupole fields were

adopted to both the tracking and the

machine.
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fractional tune

Before optimization

(cal) Resonant Line after Optimization

After optimization
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the injection point.
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Tracking Results: Frequency Map Analysis

Before optimization
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Momentum Acceptance (-)

Momentum Acceptance (RF voltage = 16 MV)

Tracking Results: Momentum Acceptance
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Injection efficiency should be
improved without the reduction of
the beam lifetime.
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Experimental Results: Injection Efficiency and Beam LifeTime

(meas) Injection efficiency

(meas) Beam lifetime
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before tune corr..4

inj-loss, ID gap close (BBF-set1 + IDO7 even 20.1mm), scraper open
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fractional tune
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Experimental Results: Amplitude Dependent Center Shift
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Summary

Beam loss should be suppressed for avoiding damage on machine components.

Phenomena induced by sextupole magnetic fields can generate the beam loss, so that
the optimization of sextupole fields is indispensable.

At the SPring-8, the injection efficiency was improved by optimizing the sextupole fields,
by separating the resonant point of 3Q, ~ int. from the injection point.

The reliable monitors and the reliable tracking code are powerful tools to manifest the
mechanism of beam loss, to make the countermeasure, and to improve the
performance of the low emittance ring.



Electron beam Amplitude Dependent Center Shift
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