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Beam stability requirements in modern light
sources

« Beam instability becomes a crucial factor for an ultra-low emittance light source
. Both in term of brightness and resolution of experiment
. Affects the whole range from IR to Hard X-ray

* Inthis talk we focus on investigating sources of instability of beam orbit position and angle and on the
method to suppress these source

. Most facilities have a specification of orbit stability within 10% of beam size
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Methods on increasing stability

There are several methods to reduce the impact from beam instabilities
. E.g., Electron Beam Feedback using correctors, or beamline X-ray feedback using optical elements

After implementing feedbacks, there is still substantial level of noise in X-ray beams

This motivates the need to characterize the noise and pinpoint its sources
. So that we can suppress the noise from the sources directly

Increasing resolution with PLFB
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Comparison of images from the Hard x-ray nanoprobe (HXN) beamline at
NSLS-Il with local optical feedback off (left) and feedback on (right) with
the plxel size was 10x10 nm2.
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PLFB: Photon Local Feedback

Vertical noise signal

Source of spectral peak is vibration of a DI Water pump
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when FOFB was off and on.
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PSD of the e-beam and quadrupole when the booster ON or OFF
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Tools and data analysis

Beam position monitor (BPM) is a common tool for investigating the e A
beam stability trequency (Hz)
Figure 2: Displacement PSD of the e-beam and

quadrupole C16QF7 when booster was ON/ECO/OFF.
The three measurements were made at 17:10, 17:40,
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Tools and data analysis

« Common method to analyze the location of noise is
In using BPM data

6 = R 1x,

where R is orbit response matrix, x is a vector of beam
positions, and @ is a vector of angle kicks

« SVD and regularization are commonly implemented,
same as in beam orbit feedback

R=UzV",R™' =VDU"
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Analysis of Archive Data

»  Archives record long-term beam motion
. Long-term data records — years
. Many types of processed data — Slow Acquisition (SA) beam position, RMS noise, pumps speed, etc.
. Archive data is very useful for analysis of the low-frequency range — <10 Hz at NSLS-I|
. Investigation of beam slow drifts and trends
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Achieved beam orbit stability at Shanghai
Synchrotron Radiation Facility (SSRF) (J. Chen
Syn. Rad. News 2019)
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Figure 1: RMS displacement in the frequency
range of 4-12 Hz of the e-beam, quadrupoles and
SRTU wall versus time.

(L. Zhang, PAC2001)

X-ray beam position from HXN beamline at
NSLS-Il when local feedback off/on



Pathways to future light sources

«  Future light sources require investigating of s .
instability at early stage, i.e. during S 0% Toymehroton moton -
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Investigation of beam orbit
Instability at NSLS-II

 NSLS-Il is a third-generation synchrotron light source
. Located at Brookhaven National Laboratory, Upton, NY, USA
. Circumference of 792 m (storage ring)

. 3 GeV, 500 mA beam current with 1 nm-rad horizontal and 8
pm-rad vertical emittance (design)

. Beam sizes at source points are ~100 um/3 um

1072 . . v v
- We formed a task force to investigate beam instabilities of e s
the electron/photon beam 10| Sverage ot of non-dspersve STRE)
Booster ramping 60 Hz AC Synchrotron RF switch
. Characterize the spectra of noise N frequency | frequency
- ~ 10° I
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4
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Noise Characteristics

Our focus was on investigating the source of

transverse motion

We found that the dominant spectral noise is in the

range of 50-60 Hz

. Likely to be mechanical vibrations or electronics

Also, injection cycle generates noise in 1 Hz range

Dispersive BPMs showed
additional peaks

 0.4-0.7, 360, 720,

1080, 1440 Hz, and 2

kHz.

« The patterns were the

same as the

dispersion function,

implies energy

instability e.g., RF

system
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Vertical

~Cell 28

Other noise sources

el 18

Other sources were also found

Y“\Ceﬂ 8

* High frequencies noise from cell 8, 18, 28
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. 6 Damping Wigglers reside in these cells Frequency [Hz]

. Verified that the noise was not related to the damping wigglers’ gap Slow correctors power supply

. Potential source — electronic noise (high frequencies) 03— ' '

0.02
« A60 Hz from slow corrector power supplies in cell 22-24 < oor| C23 M ! ML
: G L - < o.00 [N

We developed a real-time monitoring for beam orbit instability = oo i

. Based on EPICS, CSS, Python ~0.02

-0.03

. Find five biggest peaks and their locations 26000 26500 27000 27500 28000
. Recorded in the Archive

Live monitoring application (CSS pages) NSLS-Il Control Room 13




Investigation of beamline’s instabilities

©

We discussed sources of instability and
diagnostics in the storage ring

Next, we investigated the beam stability of
a beamline

We picked one of the most sensitive
beamlines at NSLS-II

. Hard X-ray nanoprobe beamline (HXN)
. 120 m long instrument
. Imaging with resolution 10x10 nm?

Procedures
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refractive lens

(CRL)

) Y
Z
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spectral of beam position from XBPM-FE and rf-BPM
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Impacts of electron beam on X-ray beam

stability

28 Hz and 120 Hz
were not from the
electron beam

The impact of the
electron beam on X-
ray beam stability is
smaller in the
horizontal

The vertical electron
noises’ amplitude
were comparable to
the peaks above
120 Hz
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National Laboratory
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Investigation of the sources and effects

«  Suspected that the noise sources of 28 Hz and 120 Hz were in Hutch-A (horizontal mirrors or
monochromator)

Amplitude of 28 Hz vibration was not steady — probably related to turbulence of cooling system

Plan to measure the vibration of each element in Hutch-A

. Local water-cooling pumps

«  Cryo-cooling

Optical stages

Plan to simulate the effects of these instabilities to the images of HXN

« SRW - effects of steady misalignments has been studied (O. Chubar)
. Including beam vibration calculation (S. Kongtawong, 2022)

XBPM-C ys time (Horizontal), dataset: 25

| e Monochromator

140
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120

100

position [m]

oo
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T

60
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Summary

« We presented effects and requirement of beam stability of modern light sources around the world

 Tools and analysis for diagnostic
. BPM, XBPM
. Vibration — geophones, accelerometers
. Archivers — long-term monitoring, low-frequency
. Analyze noise location in corrector domain — inverse response maitrix

*  Future light sources
. Estimate effects of beam stability — amplification factor from ground motion
. Upgrade beam correction systems

« We investigated the dominated contributions in the noise affecting electron beam orbit stability at
NSLS-II

. Use BPM data and vibration data to identify the sources
. 50-60 Hz had the biggest amplitudes — verified to be from DI water pumps

«  We investigated x-ray beam instability at the HXN beamline

. The dominated noises at HXN were 28 Hz and 120 Hz — not from the electron beam, likely to be cooled
mirrors in hutch-A

. Effects of electron instability were comparable to the beamline noise in the vertical plane — small in the
horizontal plane

. Need to investigate the sources of vibration further, including water cooling, cryocooling

18
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Sources of beam orbit instability
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Potential noise sources at —
NSLS-I (<1OO HZ) N. Simos 2019 \

i\ :

* NSLS-II has 30 cells \/

Atlantic Ocean
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 Highway — noise from traffic e
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Noise locator analysis

Test the method

« Tested with simulation (Elegant)
 Benchmarked against well-
Known noise sources
* Pinger power supply 60 Hz
* Injection 1 Hz
» Gave correct source locations

Brookhaven

National Laboratory
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= | <_The peak is at corrector no. 82
: 10 (at the end of cell no. 28)
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The peak is at corrector no. 63
(at the end of cell no. 21)

Pinger I?S isin cell 21
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(cell no. 27)
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Local feedback can only
P. llinski, Active beamline feedback implementation for photon beam stability, DLSR7 2021, MAX IV Laboratory, Lund, Sweden suppress Iow-frequency noise

Y Nationai Laboratory HXN’s layout and drifts (<1 Hz) 24




