

B physics at Belle II

KSETA Plenary Workshop, **16.03.2022**

Torben FERBER (torben.ferber@kit.edu)

with input by Sascha Dreyer, Felix Metzner, Alex Heidelbach, Giacomo De Pietro, ...

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

www.kit.edu

Outline

Flavour physics and flavour anomalies (heavy new physics)

Belle II

Long lived particles (light new physics)

Flavour physics

DEFINITION: Flavour

is a quantum number used to distinguish particles/fields that have the same gauge quantum numbers

In the SM: quarks and leptons come in three copies with the same colour representation and electric charge

DEFINITION: Flavour physics deals with interactions that distinguishes between flavours

In the SM: QED and QCD interactions do not distinguish between flavours, while the weak interactions (and the couplings to the Higgs field) do

Charged and neutral currents

Flavour changing charged currents

- Torben Ferber B physics at Belle II 6
- $t \rightarrow b$: Top physics (CDF/DØ, ATLAS, CMS)

 $b \rightarrow u, c \text{ and } t \rightarrow d, s$: B physics (Babar, Belle, CDF, DØ, LHCb)

CKM matrix V: Unitarity conditions

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1$$

$$|V_{cd}|^{2} + |V_{cs}|^{2} + |V_{cb}|^{2} = 1$$

$$|V_{td}|^{2} + |V_{ts}|^{2} + |V_{tb}|^{2} = 1$$

$$|V_{ud}|^{2} + |V_{cd}|^{2} + |V_{td}|^{2} = 1$$

$$|V_{ub}|^{2} + |V_{cs}|^{2} + |V_{ts}|^{2} = 1$$

 $V_{ud}^* V_{cd} + V_{us}^* V_{cs} + V_{ub}^* V_{cb} = 0$ $V_{ud}^* V_{td} + V_{us}^* V_{ts} + V_{ub}^* V_{tb} = 0$ $V_{cd}^{*}V_{td} + V_{cs}^{*}V_{ts} + V_{cb}^{*}V_{tb} = 0$ $V_{ud}V_{us}^* + V_{cd}V_{cs}^* + V_{td}V_{ts}^* = 0$ $V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$ $V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0$

CKM matrix V: Unitarity conditions

Jargon

"Charge conjugation implied"

- We will only write down one specific charge (e.g. B+), but always mean the charge conjugate as well (e.g. B⁻). Can become a bit messy with (anti-)neutrals.
- D* and K* are excited mesons that immediately decay
 - $D^{+*} = D^{+*}(2010)$, decays to $D^{+}\pi^{0}$ or $D^{0}\pi^{+}$
 - $D^{0*} = D^{0*}(2007)$, decays to $D^0\pi^0$ or $D^0\gamma$
 - $K^* = K^{*0} = K^{*0}(892)$, decays to $K^+\pi^-$ or $K^0\pi^0$
 - K⁰ is either a K⁰_S (decays to $\pi^-\pi^+$) or a K⁰_L

Flavour anomaly 1: Charged current

$R_{D^{(*)}} \equiv \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_{\ell})}$

10 Torben Ferber - B physics at Belle II

Flavour anomaly 1: Charged current

$$R_{D^{(*)}} \equiv \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau)}{\mathcal{B}(\bar{B} \to D^{(*)}\ell)}$$

Forbidden at tree-level

Allowed at one-loop level

14 Torben Ferber - B physics at Belle II

 $R_K = \frac{\mathcal{B}(B^{\top} \to K^{\top} \mu^{\top} \mu^{\top})}{\mathcal{B}(B^+ \to K^+ e^+ e^-)}$

 $R_{K^*} = \frac{\mathcal{B}(B \to K^* \mu^+ \mu^-)}{\mathcal{B}(B \to K^* e^+ e^-)}$

 $R_{\phi} = \frac{\mathcal{B}(B_s \to \phi \, \mu^{\top} \mu^{-})}{\mathcal{B}(B_s \to \phi \, e^{+} e^{-})}$

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1-F_L) \\ -F_L \cos^2\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2 \end{bmatrix} - F_L \cos^2\theta_K \,\mathrm{d}\phi \,\mathrm{d}\phi$$

$$P'_{i=4,5,6,8} =$$

 $E_L)\sin^2\theta_K + F_L\cos^2\theta_K + \frac{1}{4}(1 - F_L)\sin^2\theta_K\cos 2\theta_\ell$ $\cos 2\theta_{\ell} + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi$ $\ln \theta_{\ell} \cos \phi + S_6 \sin^2 \theta_K \cos \theta_{\ell} + S_7 \sin 2\theta_K \sin \theta_{\ell} \sin \phi$ $\ln 2\theta_{\ell}\sin\phi + S_9\sin^2\theta_K\sin^2\theta_\ell\sin 2\phi \Big]$

$$\frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$

Now what?

• $B \to K^{(*)} \nu \bar{\nu}$ (only upper limits so far)

to Kaon...

• $B \to K^{(*)} \tau^+ \tau^-$ (only upper limits so far)

Much harder experimentally...

Did we break the SM? (Very heavy) Leptoquarks?

Much harder experimentally, much smaller theory uncertainty, but angular analysis is limited

How to produce B-mesons?

How to produce B-mesons?

- SuperKEKB nominally operates at 10.58 GeV collision energy
- ~9-12 GeV accessible
- B_sB_s threshold at 10.74 GeV (below Y(5S) resonance)

SuperKEKB accelerator

Asymmetric ee collider

• 4 GeV e⁺, 7 GeV e⁻ $\sqrt{s} = 10.58$ GeV

Large crossing angle: 83 mrad

Major upgrade to the accelerator with $30 \times$ the KEKB design luminosity (6×10^{35} $cm^{-2}s^{-1}$, 50 ab^{-1} (50× Belle))

1.5× higher beam currents, 20× smaller beam spot

Record: 3.12×10³⁴ cm⁻²s⁻¹ (June 22 2021)

SuperKEKB accelerator

Luminosity

Belle: ~1000 fb⁻¹ BaBar: ~500 fb⁻¹

Belle II summer 2022: ~500 fb⁻¹

$N = \sigma \int \mathscr{L} dt$ $\sigma(\Upsilon(4S)) \approx 1.05 \,\mathrm{nb}$ $N(B^{+})?$

Belle II Experiment

Software, Calibration

Electromagnetic calorimeter (ECL):

Csl(Tl) crystals waveform sampling (energy, time, pulse-shape)

PXD silicon detectors

Vertex detectors (VXD):

2 layer DEPFET pixel detectors (PXD)

4 layer double-sided silicon strip detectors (SVD)

Central drift chamber (CDC):

 $He(50\%):C_2H_6$ (50%), small cells, fast electronics

electrons e-

Institut für Experimentelle Teilchenphysik (ETP)

MPPC: multi-pixel photon counter

Trigger

Pile-up?

Central drift chamber

Electromagnetic calorimeter

Central drift chamber

Institut für Experimentelle Teilchenphysik (ETP)

CDC dE/dx

Aerogel Ring-Imaging Cherenkov counter

Electromagnetic calorimeter

Muon detector

Electromagnetic calorimeter 0.2 < p < 0.6 GeV/c

electron identification

muon identification

Particle identification: Cosine of the polar Angle [cosθ]

Why asymmetric collision energies?

Flavour tagging

Categories	Targets for \overline{B}^0	Underlying
Electron	e^{-}	
Intermediate Electron	e^+	$\overline{B}^0 \to D^*$
Muon	μ^-	
Intermediate Muon	μ^+	
Kinetic Lepton	ℓ^-	
Intermediate Kinetic Leptor	ℓ^+	$\overline{B}^0 \to D^1$
Kaon	K^{-}	
Kaon-Pion	$K^-,~\pi^+$	
Slow Pion	π^+	
Maximum p^*	ℓ^-,π^-	$\overline{B}^0 \to \Lambda_c^+$
Fast-Slow-Correlated (FSC)	$\ell^-, \ \pi^+$	
Fast Hadron	$\pi^-,~K^-$	
Lambda	Λ	

https://arxiv.org/abs/2110.00790

40 Torben Ferber - B physics at Belle II

g decay modes

 $\longrightarrow \overline{K}^0 \quad \nu_\ell \quad \ell^+$

Charged B+: ~40 % efficiency

Tag-side reconstruction

Tag side

Tag-side reconstruction: Full Event Interpretation

Lifetime: Standard model

Lifetime

distance *r*

Lifetime: Prompt decays

distance *r*

Lifetime: Displaced decays

distance *r*

Lifetime: Invisible decays

Lifetime

B→KS

$B^+ \rightarrow K^+S$

Vertex reconstruction efficiency decreases with more displacement (shorter tracks)

52 Torben Ferber - B physics at Belle II

Mass resolution increases with with more displacement

B→KS

Standard model background very small for significant (>0.5cm) displacement

Very optimistic assumptions θ in pheno studies...

 10^{-4}

A. Filimonova, R. Schäfer, S. Westhoff, Phys. Rev. D 101, 095006 (2020) A. Kachanovich, U. Nierste, I. Nišandžić, Eur.Phys.J.C 80 (2020)

B→Ka

B→Ka

$\Gamma(a \to \gamma \gamma) = \frac{g_{aW}^2 \sin^4 \theta_W M_a^3}{M_a^2}$

 64π

plots by A. Heidelbach

B→Ka

Effect of longer lifetime: It is difficult!

performance compared to prompt	B→KS(→µµ)	B→Ka(→γγ)	A'→ee
Efficiency*	worse	worse constant	
Resolution slightly worse		much worse	slightly worse
Background	much smaller	constant	it depends

This is just the beginning...

Torben Ferber - B physics at Belle II 60

Backup

Upgrade

Subdector	Function	upgrade idea	time scale
PXD	Vertex Detector	2 layer installation	short-term
		new DEPFET	medium-term
SVD	Vertex Detector	thin, double-sided strips, w/ new frontend	medium-term
PXD+SVD	Vertex Detector	all-pixels: SOI sensors	medium-term
		all-pixels: DMAPS CMOS sensors	medium-term
CDC	Tracking	upgrade front end electronics	short/medium-term
		replace inner part with silicon	medium/long term
		replace with TPC w/ MPGD readout	long-term
TOP	PID, barrel	Replace conventional MCP-PMTs	short-term
		Replace not-life-extended ALD MCP-PMTs	medium-term
		STOPGAP TOF and timing detector	long-term
ARICH	PID, forward	replace HAPD with Silicon PhotoMultipliers	long-term
		replace HAPD with Large Area Picosecond Photodetectors	long-term
ECL	$\gamma, e \text{ ID}$	add pre-shower detector in front of ECL	long-term
		Replace ECL PiN diodes with APDs	long-term
		Replace CsI(Tl) with pure CsI crystals	long-term
KLM	K_L, μ ID	replace 13 barrel layers of legacy RPCs with scintillators	medium/long-term
		on-detector upgraded scintillator readout	medium/long-term
		timing upgrade for K-long momentum measurement	medium/long-term
Trigger		firmware improvements	continuos
DAQ		PCIe40 readout upgrade	ongoing
		add 1300-1900 cores to HLT	$\operatorname{short/medium-term}$

ALPs

https://arxiv.org/abs/2007.13071

Dark Photons

Ψ

https://arxiv.org/abs/2202.03452

B→Ka

B→Kvv

- Branching rate prediction: $BR=(4.6\pm0.5)\times10^{-6}$
- So far, only upper limits measured using fully reconstructed B_{tag} ($\epsilon \sim 0.04-0.2$ %): BR < 1.6×10⁻⁵ (90 % CL) with 424 fb⁻¹

SY.

T. Blake et al, Prog.Part.Nucl.Phys. 92 (2017) BaBar collaboration, Phys. Rev. D 87, 112005

Y(4S)

SuperKEKB parameters

LER / HER	KEKB	SuperKEKB	Effect
Energy [GeV]	3.5 / 8	4.0 / 7.0	boost x 2/3
Crossing angle 2 _{\$x} [mrad]	22	83	
β _y * [mm]	5.9 / 5.9	0.27 / 0.30	L x 20
<i>I_±</i> [A]	1.64 / 1.19	2.8 / 2.0	L x ~1.5
$\varepsilon_y = \sigma_y \times \sigma_{y'}$ [pm]	140 / 140	13/16	
$\xi_y \sim (\beta_y^* / \epsilon_y)^{1/2} / \sigma^*_x$	0.129 / 0.09	0.09 / 0.09	L x 1
Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	2.1	60	L x 30

Backup g-2

CsI and CsI(TI) pulse-shape discrimination

69 Torben Ferber - B physics at Belle II

