cloudera

Ask Bigger Questions

Hadoop In Social Network Analysis
- overview on tools and some best practices -

GridKa School 201 3, Karlsruhe | 201 3-08-27/
Mirko Kampf | mirko@cloudera.com

Dienstag, 27. August 13



MARTIN LUTHER
UNIVERSITAT
HALLE-WITTENBERG

cloudera
%DC'DN'CAL Ask Bigger Questions

HADOOP
\. @. DEVELOPMENT TOOLS

] M|r|<o Kam pf

Physicist, U Chemnitz, 2009
Java Trainer, since 2003

Java Developer, since 1996
Committer, PPMC @ ASF

Hadoop lrainer, Cloudera, Inc.

Research Project:

SOCIONICAL, Martin-Luther Universitat Halle-Wittenberg
Open Source Activity:

Hadoop Development Tools (Apache HDT)

Hadoop. TS (on GITHUB)

Dienstag, 27. August 13



WHATS COMMING?

|) Complex Systems, from Time Series to Networks ...

2) Data, data, and even more data ... but how to handle It?
3) Some results of our project ...

4) Lessons learned, some recommendations ...
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Hadoop in Social Network Analysis ' ‘
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Abstract: " /
A Hadoop cluster is the tool of choice for many large scale analytics
applications. A large variety of commercial tools is available for typical SQL Rl
like or data warehouse applications, but how to deal with networks and \\"/]m;l)“\
time series!’ ‘
How to collect and store data for social media analysis and what are
good practices for working with libraries like Mahout and Giraph?
The sample use case deals with a data set from Wikipedia to illustrate
how to combine multiple public data sources with personal data
collections, e.g. from Twitter or even personal mailboxes. We discuss
efficient approaches for data organisation, data preprocessing and
for time dependent graph analysis.

Bulk Processing

Datatypes  rz  |/O-Formats

Sequencefile

Distributed StO rage Random-Access

Sampling Rate  vectorwriteable

Partitions

Dienstag, 27. August 13


http://www.google.com/url?sa=i&rct=j&q=hadoop&source=images&cd=&cad=rja&docid=-KrarcGQVxy1iM&tbnid=58EOAD1EoNd1UM:&ved=&url=http%3A%2F%2Fblog.enablecloud.com%2F2012%2F06%2Fwhat-lies-at-core-of-hadoop.html&ei=6r2bUZb2LIWx0QXP6oHoBQ&bvm=bv.46865395,d.d2k&psig=AFQjCNFE6RbY-V0U_JWAxaNDxnjmn4hpJQ&ust=1369247595156623
http://www.google.com/url?sa=i&rct=j&q=hadoop&source=images&cd=&cad=rja&docid=-KrarcGQVxy1iM&tbnid=58EOAD1EoNd1UM:&ved=&url=http%3A%2F%2Fblog.enablecloud.com%2F2012%2F06%2Fwhat-lies-at-core-of-hadoop.html&ei=6r2bUZb2LIWx0QXP6oHoBQ&bvm=bv.46865395,d.d2k&psig=AFQjCNFE6RbY-V0U_JWAxaNDxnjmn4hpJQ&ust=1369247595156623
http://www.google.com/url?sa=i&rct=j&q=hadoop&source=images&cd=&cad=rja&docid=-KrarcGQVxy1iM&tbnid=58EOAD1EoNd1UM:&ved=&url=http%3A%2F%2Fblog.enablecloud.com%2F2012%2F06%2Fwhat-lies-at-core-of-hadoop.html&ei=6r2bUZb2LIWx0QXP6oHoBQ&bvm=bv.46865395,d.d2k&psig=AFQjCNFE6RbY-V0U_JWAxaNDxnjmn4hpJQ&ust=1369247595156623
http://www.google.com/url?sa=i&rct=j&q=hadoop&source=images&cd=&cad=rja&docid=-KrarcGQVxy1iM&tbnid=58EOAD1EoNd1UM:&ved=&url=http%3A%2F%2Fblog.enablecloud.com%2F2012%2F06%2Fwhat-lies-at-core-of-hadoop.html&ei=6r2bUZb2LIWx0QXP6oHoBQ&bvm=bv.46865395,d.d2k&psig=AFQjCNFE6RbY-V0U_JWAxaNDxnjmn4hpJQ&ust=1369247595156623

Hadoop in Social Network Analysis

Abstract:

A Hadoop cluster is the tool of choice for many large scale analytics
applications. A large variety of commercial tools is available for typical SQL
like or data warehouse applications, but how to deal with networks and
time series!’

How to collect and store data for social media analysis and what are
good practices for working with libraries like Mahout and Giraph?

The sample use case deals with a data set from Wikipedia to illustrate
how to combine multiple public data sources with personal data
collections, e.g. from Twitter or even personal mailboxes. We discuss
efficient approaches for data organisation, data preprocessing and
for time dependent graph analysis.

Apache Oozie (Workflow)
Pig Latin Mahout
Data Analysis Machine Learning

Map Reduce Framework

HDFS (Hadoop Distributed File System)
Flumi

Import or export

B = — 1=

Unstructured or semi structured Data Structured Data

Sqoop

By Manaranjan Pradhan

(A) The Hadoop Ecosystem, offers a
new technology to store and process
large data sets, which are in the focus
of interdisciplinary research.

(B) Our data sets are created or
generated by highly dynamic and
flexible Social Media Applications.

(C) This requires new scientific
approaches from complex systems
research and also new technology.

...and the loop is cosed.
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Hadoop in Social Network Analysis

Abstract:

A Hadoop cluster is the tool of choice for many large scale analytics
applications. A large variety of commercial tools is available for typical SQL
like or data warehouse applications, but how to deal with networks and
time series!’

How to collect and store data for social media analysis and what are
good practices for working with libraries like Mahout and Giraph?

The sample use case deals with a data set from Wikipedia to illustrate
how to combine multiple public data sources with personal data
collections, e.g. from Twitter or even personal mailboxes. We discuss Social networks consist of nodes,

efficient approaches for data organisation, data preprocessing and which are the real world objects
for time dependent graph analysis.

and edges, which are e.g. relations,
interactions or dependencies
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Complex Networks

Definitions:

"A system comprised of a (usually large) number of (usually strongly)
interacting entities, processes, or agents, ...

the understanding of which requires the development, or the use of,
new scientific tools, nonlinear models, out-of equilibrium descriptions and
computer simulations." [Advances in Complex Systems Journal]

"A system that can be analyzed into many components having relatively
many relations among them, so that the behavior of each component
depends on the behavior of others." [Herbert Simon]

"A system that involves numerous interacting agents whose aggregate
behaviors are to be understood. Such aggregate activity is nonlinear, hence
it cannot simply be derived from summation of individual components
behavior." [Jerome Singer]

Nonlinear models

out-of equilibrium :

e Aggregation
Dynamics of Components

Dynamics of Subsystems

Interaction Hierarchical Systems

Superposition not possible

Dependency cycles

Based on Rocha, Luis M. [1999]. BITS: Computer and Communications News.

Computing, Information, and Communications Division. Los Alamos National Laboratory. Nov. 1999.
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Social Networks are
Complex Networks.
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INTRODUCTION OF OUR PROJECT

Social online-systems are complex systems used for, e.g., Information spread.

We develop and apply tools from time series analysis and network analysis
to study the static and dynamic properties of social on-line systems and their relations.
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INTRODUCTION OF OUR PROJECT

Social online-systems are complex systems used for, e.g., Information spread.

We develop and apply tools from time series analysis and network analysis
to study the static and dynamic properties of social on-line systems and their relations.

VWebpages (the nodes of the WWW) are linked in different, but related ways:

direct links pointing from one page to another (binary, directional)
similar access activity (cross-correlated time series of download rates)
similar edit activity (synchronized events of edits or changes)

We extract the time-evolution of these three networks from real data.
Nodes are identical for all three studied networks, but links and network
structure as well as dynamics are different. We quantify how the inter-
relations and inter-dependencies between the three networks change in time and affect each other.
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CHALLENGES ..

Complex System Time evolution ???

» Data points (time series) collected at independent locations or obtained form
individual objects do not show dependencies directly.

* [t 1s a common task, to calculate several types of correlations, but how are these
results affected by special properties of the raw data’

* What meaning do different correlations have and how can we eliminate artifacts
of the calculation method!
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CHALLENGES ..

Element properties
Complex System Measured data is Time evolution ???
“disconnected”

» Data points (time series) collected at independent locations or obtained form
individual objects do not show dependencies directly.

* [t 1s a common task, to calculate several types of correlations, but how are these
results affected by special properties of the raw data’

* What meaning do different correlations have and how can we eliminate artifacts
of the calculation method!
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CHALLENGES ..

access rate [1/h]
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Complex System Measured data is Time evolution ???

“disconnected”
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CHALLENGES ..

System properties

Element properties Derived from relations
Complex System Measured data is Y | Time evolution ???
"y y between elements and
disconnected

structure of the network

» Data points (time series) collected at independent locations or obtained form
individual objects do not show dependencies directly.

* [t 1s a common task, to calculate several types of correlations, but how are these
results affected by special properties of the raw data’

* What meaning do different correlations have and how can we eliminate artifacts
of the calculation method!
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CHALLENGES ..
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Meassurement of Time Series
Complex System . .
Time Series Analysis

*Physiology of Human Body Properties of | Dependencies
Communication Systems Single Nodes | between Nodes

*Financial Markets

Network Analysis

* Time Series Analysis
- If our data set i1s well prepared and we have records
with well defined properties (as iIn RDBMS),

than

ive and Pig work well.

 How to organize the loose data in records?
* How to deal with sliding windows!
* How to handle intermediate data?
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TIME SERIES: WIKIPEDIA USER ACTIVITY

Node = article 400

| (b)
(specific topic) - 300 10
| 200 |
- : 100 |
i = cata g o | HMLII J”II M o |,A|’ﬁ
= 1200 (T @
|. Hourly access k 200 1= 10,
frequency 2 1=
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| © o.m ’J L M“ | |
downloads for each 12001 (€) 4113|4379 | |
hour in = 300 days) 900, ‘;
600 |
2. Edit events 300/ l |
(time stamps for all changes % 2000 4000 6000 |
in the wikipedia pages) R |

Examples of Wikipedia access time series for three articles with (a,b) stationary access rates (‘llluminati (book)"), (c,d) an
endogenous burst of activity (‘Heidelberg'), and (e,f) an exogenous burst of activity (‘Amoklauf Erfurt’). The left parts show the
complete hourly access rate time series (from January |, 2009, till October 21, 2009; i.e. for 42 weeks = 294 days = 7056 hours).
The right parts show edit-event data for the three representative articles.

[}
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TIME SERIES: WIKIPEDIA USER ACTIVITY

Node = article [ - o)
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Of‘Iterlng resamplmg

preprocessing, calculation on single records }
§ e feature extraction (peak detection) |

§ * creation of (non)-overlapping episodes or (sliding) windows Map_Reduce / UDF ‘
§ * creation of time series pairs for cross-correlation
’ or event synchronisation
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* Graph Analysis
f network data I1s prepared as an adjacency list or an
adjacency matrix, tools like Giraph or Mahout work well.

iBut: only if the appropriate data strcutures §
tand Input-Format Readers exist. :
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TYPES OF NETWORKS

a) unipartite network, one type of nodes and links
b) bipartite network, one type of connections
c) hypergraph, one link relates more than two nodes

| lin Ifs of j ust one si N glete ;

Individual l Usu 4/
R Jéﬁ\
%@z/

V Rcso ]

(a) (b) (¢)
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TYPES OF NETWORKS

MULTIPLEX NETWORKS G
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* Graph Analysis

o
'

,» * creation of adjacency matrix is not trivial ¢
¥ *adjacency matrix is an ineffiecient format |
$ ofiles stored in HDFS are read only and

f can not be changed

¥ o store dynamic edge / node properties in HBase §
"1" * aggregate relevant data to network snapshots |
§ *store intermediate results back to HBase and
§ preprocess this data in a following utility-step }

- Large scale raw data sets have to be stored and processed
In a scalable distributed system.

 How to organize node/edge properties!?
 How to deal with time dependent properties!?
- How to calculate link properties on the fly?
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RECAP: WHAT IS HADOORP !

» Distributed platform to store and process massive amounts of data in parallel

* Implements Map-Reduce paradigm on top of Hadoop Distributed File System.

Apache Oozie (Workflow)
Pig Latin Mahout
Data Analysis Machine Learning

Map Reduce Framework

HDFS (Hadoop Distributed File System)
Flum@ '

Import or export

. & |.| !},:_.

Unstructured or semi structured Data Structured Data

Sqoop

By Manaranjan Pradhan
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RECAP: WHAT IS HADOORP !

» Distributed platform to store and process massive amounts of data in parallel

* Implements Map-Reduce paradigm on top of Hadoop Distributed File System.

» Map-Reduce : JAVA APl to implement a map and a reduce phase

. Map phase uses key/value pairs,

Pig Latin

* Reduce phase uses key/value-list pairs DR

« HDFS files consist of one or more blocks Map Reduce Framework
(distributed chunks of data). o

HDFS (Hadoop Distributed File System)
Flum‘ 'Sqoop
|

- Using data locality when possible by rrtor |
assigning the map task to a node that ' & -

Unstructured or semi structured Data Structured Data

contains the chunk locally. 84 Manaranjan pradhan

» Chunks are distributed transparently
(in background) and processed in parallel.
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MAP REDUCE:
TYPICAL APPLICATIONS

* Filter, group, and join operations on large data sets ...

* the data set (or a part of it)™ Is streamed
and processed in parallel, but usually not in real time

*f partmomng s used

—_—

* Algorithms like k-Means Clustering (Apache Mahout)
or Map-Reduce based implementations of SSSP work
in multiple iterations

» data Is loaded from disk to CPU In each rteration!

, heavy /O workload |
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HADOOP:

Platform for large scale data integration

weather dato, satelite
feeds, etc.

: : Algorithm & Method
Medical imoging, sensor Development
data, genome sequencing, ;

Finanaal pharmoceutical ,
manufacturing, nsurance,
airkne, energy, & retail data

Server Cloud
for scale out

Sales data, customer
behavior, product databases,
accounting data, etc.

Import :
Log files, heaith & status

feeds, octivity streams, network
—— : Hadoop Distributed

messages, Web analytics,

intrusion, spom Nst File System (HDFS) J.

0 High Volume ° MapReduce Process ° Consume Results
Data Flows

From http://www.ebizqg.net/blogs/enterprise
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OVERVIEW - DATA FLOW
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OVERVIEW - DATA FLOW
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OVERVIEW - DATA FLOW

GQL Database

Preselectl of

Usage of Extfaction of .;;y\l
Wikipedia Log-Data codi {;

Cctrrelatnon

l Filter |

rime 53./

Node-Gro ps Lndt\ole ks

TN
N
\

(Matnx

J

*Topic of interest
*Preprocessing or Compression
*Intermediate Data structures

*Analysis Steps

/[

Interpretation
of Clusters

15

N

-~

luste
Detecti

§ Network Clustering != k-Means Clustering  §

Dienstag, 27. August 13




OVERVIEW - DATA FLOW

saL DatabaD\*

1]

gage of | | Extractic

q 2 ion of 1
Wilpedla LogOsta En

/’\\‘
inary'

coding

\

Preselectl of

Correlatuon

4 \ A
e

' Fllter |

\

Tiu‘-le S

\
f
No&e-Gropps List of Lu)ks Matﬂ/x
il
et of
Node-Groups

S —

*Topic of interest

*Analysis Steps

*Preprocessing or Compression

*Intermediate Data structures

/[

Interpretation
of Clusters

30

N

-

‘ luste
Detecti

Dienstag, 27. August 13



RESULTS: CROSS-CORRELATION

measured data

Distribution of cross-correlation coefficients for pairs of
access-rate time series of Wikipedia pages (top) compared
to Surrogat data (bottom) - 100 shuffled configurations are considered

&l
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RECOMMENDATIONS (1)

» Create algorithms based on reusable components!
» Use or create stable and standardized I/O-Formats!

* Do preprocessing, e.g. a re-organization of unstructured data,
T you have to process the data many times.

* Collect event data in HBase and create Time-Series Buckets
for advanced procedures, maybe on a subset of the data.

» Store Intermediate data (e.g. time dependent properties)
in HBase, close to the raw data, and allow random access.
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RECOMMENDATIONS (2.)

* Consider Design Patterns
* Partitioning vs. Binning
» Map-Side vs. Reduce-Side Joins

* Use Bulk Synchronuos Processing for graph processing
instead of Map-Reduce, or even a combination of both.

* In classical programming: (and also in Hadoop !!!)
find good data representation to find good algorithms.

* Think about access patterns: streaming vs. random access
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