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Outline
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® Many cores and parallelism
(‘Power Wall')

® New Design Paradigm for HEP

® Memory Speed and Bad Programming
(‘Memory Wall')

® Summary
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The ‘Power WalbP
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- Moores law alive and well!
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- Moore's law alive and well!
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..but clock frequency scaling replaced by cores/chip
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- Moore's law alive and well!
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The reason is that we can't afford more power consumption

1.E+07 _ _
Power is the root cause of all this

1.E+06

¢ Transistors (in Thousands)
1. E+05 ® Frequency (MHz)

Power (W)

1.E+04

® Cores

A hardware issue just became a

software problem
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Moore's:Law reinterpretea

» 7 2 two T |ets + X, 60 b’

® Number of cores per chip will double every two years
® |nstruction parallelization (vectorization) increases

® (lock speed will not increase (or even decrease) because of
Power consumption:

Power «x Frequency®’

® [Need to deal with systems of tons of concurrent threads and
calculations

® |n GPUs that's reality already now

® \We can learn a lot from game programmers! (*)

(*) thanks to all of you who fund their “research™ by playing during office times ;-)
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“Easiest” "Way of Parallelization
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® HLEP is parallel since ~a
decade!

® ‘“embarrassingly’ parallel
o |[HC Computing Grid

® Processing tens of billions
of LHC events/year

® Running 24/7 365 days a
year

So why not treating every many-core
computer as a computing centre of its
own with many independent jobs on it!

® |argest parallel application
everl
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ysics Challenges
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CMS Expenment at the LHC CERN
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Physics Challenges
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® Due to the beam intensity (“luminosity’’) at the LHC multiple proton-
proton collisions take place at once (“pile-up”)

® [xperiment’s reconstruction takes up to 4 GB of memory per job

® This s expected to increase further

w
o

® Running multiple jobs on a
computer Is not really an option

N
w

N
(=]

® fFurthermore:

-
w

® Independent jobs give no handle
on cache optimized parallelization

—
o

w

201 |

Average time to reconstruct TTBar MC (sec)

® Merging of results of independent A .
S 10 15 20 25 30 35 40
jobs takes significant amount of time Average # of pileup events

o
o
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Stop-Gap solutions

CMS offline software memory budget

~1.2 GB

Event specific data

Read only data

geometry,

magnetic field,

conditions and alignment,
hysics processes, etc

Code

Shared common data
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Stop-Gap Solutions |

Events/sec vs Number of Cores
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Problem for Grid infrastructure:
“Whole-node scheduling”

==
merging
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We need to enable the application itself for parallelism

But how to make such huge code bases thread-safe’
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Framework Primer
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Experiment software follows the
concept of a ‘software bus’

H H , H yes
Output

Source ):j Event Module
"'———"

Each LHC experiment has software with about 5 million lines of code based on this model

PATH
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Framework Primer |
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® Multiple events are being processed sequentially

Input Processing Output Input Processing Output Input Processing Output

Sally yiy oy SRSy yiy SRSy iyl

® [he result Is the being put into a single output file

® [his keeps only one core busy at a time
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How to introduce Concurrency
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® (Qur software is great candidate for task based parallelism

® [he algorithms and their data dependencies form a DAG (directed
acyclic graph)

® Schedule the algorithms according to the DAG

Input Processing Output
\

R
I

-

® Sounds more trivial than it is!

® [xisting HEP software has many “back-door” communication channels
making the DAG non-obvious.

® [he software-bus and infrastructure need to be made thread-safe
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Real-world example

+ X.601b’

® Particular example taken from e s
| HCb reconstruction program

Brunel === e

® (ives an idea for the potential = N
concurrency g

® ATLAS or CMS just don't fit ST
on a slide... P e

Wednesday, August 28, 13



Unfortunate\y{ t doesn't work too well

30 b

two ]Lto%

Blindly assuming full thread safety

E 20
5
o)
o Long
& 16 serial sections
g spoil speedup!
=
-
= 12
|
=
. | |
5 4 “ Tracking muon findin; ”
3 | ! |
g ) )
Z 0
0 0,5 1,0 1,5 2,0

Average time processing one event (sec)

Typical theoretical speedup is only a factor 3 to 5
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Amdahl's Law
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Amdahl's Law
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Amdahl's Law
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Amdahl's Law
20.00 —
18.00 e T
L
/ Parallel Portion
16.00 7 ——50% ’ .
Y, — s Amdahl’s Law:

14.00 90%

12,00 / T “... the effort expended on achieving high parallel
g / processing rates is wasted unless it is accompanied by
§ 1000 7 = achievements in sequential processing rates of very
w -

8.00 /| nearly the same magnitude.” - 1967

6.00 //

pa

4.00 V/‘//_—J—

- % —

0.00 t

R R R E

Number of Processors

Gustafson’s Law

“... speedup should be measured by scaling the problem
on the number of processors, not by fixing the problem
size.” - 1988
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Re-thinking the Parallel Framework

|ets + X, 60 1o’

® Need to change the problem size
® Process multiple events concurrently
® Helps on tails of sequential processing
® Contradicts a lot of basic assumptions in existing code

® State machines expect to only hold
one event at a time In memory

® But existing code can’t be thrown away easily

® Need to localize distributed states into Q_'
“event context’ that Is passed around =

® Major efforts in all LHC experiments!
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A Glimpse on Complications
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I. The DAG is nhot known to its entirety

e Many stateful entities acting as back door w.rt. official event store
2. Shared states are rarely safe

e "Caches’ that do not behave like... well... caches

* Physicists programmers are creative in every respect!

ad

Algorithms are not thread-safe

e E.g track reconstruction cannot be run on two events concurrently
e Making all algorithms thread-safe is an impossible task

4. External libraries are not thread safe

e But iIndependent parts of the framework access them

e Not all of the libraries will be thread safe ever!
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Solutions!?
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The solution to three of the four problems is creating a smart
scheduling environment

I. The DAG has to be “fixed” by changing the existing code

2. Shared states are replaced by task-local data and thread-
safe constructs

3. If an algorithm requires a non-thread safe resource, it has to
“reserve” it beforehand

e Be careful:"reserving” is different from “locking”
(compare with hotel rooms)

4. Algorithms are being treated as resources that are being
reserved

5. If a particular resource causes a bottleneck, make it thread-
safe or provide exchangeable clones
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The Golden Rule of Software Design

Don't develop theories,
write a prototype!
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State of the Art
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Such parallel frameworks are not
only theory

® First implementations exist
already for

o (MS offline software (CMSSW)
o ATLAS/LHCb framework (Gaud)

® Let’s have a look at an example
workflow and its scaling

SPDPS M3
RICH2 aq 2
13

® A slice of the LHCb reconstruction ol S o

® Only the low level objects of the
vertex locator (VELO)

..............

This part of
the detector

LHCDb detector
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VELO Low-Level-Reco DAG

b0 1D

T VI’ 'vl -.'

» [Event/Raw/Hcal/Digits

[Event/Trig/LO/LODUReport

LODUFromRaw
DecodeVeloClusters

JEvent/Raw/Velo/Clusters

|Event/Raw/Velo/LiteClusters JEvent/Rec/Track/Velo

/Event/HIt/DecReports

IEvontJRnwlPrsJDlglts ]

IEventhalecallDigits

|Event/DAQ/RawEvent lEventhed‘lT /Summary
BrunelEventCount

p v CreateTTClusters [Event/Raw/TT/Clusters
/' ROOT File )
/ / CreateTTLiteClusters [Event/Raw/TT/LiteClusters
{Event/DAQ/ODIN
Brunelinit » [Event/Rec/Header
CreatelTClusters |Event/Rec/Status
CreatelTLiteClusters JEvent/Raw/IT/Clusters
[Event/Rec/IT/Summary
|Event/Raw/IT/LiteClusters
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Scaling result on 6-core processor
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MiniBrunel 10k evts  Tuesun 408:31:34 2013

Prellminary 2 sockets * 6 cores * 2 HT, SLCG no boost malloc, 1 socket only One event processed at the

Simul. Evts ; first graph in Iegend :

©) 3 (cloning) : |
5 (cloning)

/% 10 (cloning)

<5 20 (cloning)
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10 No cloning of algorithms:

Speedup saturates

Real Cores

"":«7“?!3‘0}] l[_}";""""

’é é‘ Cloning:
. & 7 P ideal (linear) scaling

o Q ¢ Cloning of the 3 most time
& : | | consuming algs only
. 4 Most of the code

| | | | 1| 1 1 I L1 | i | | | I 11 | | | 1 1 | | doesn’t neEd to
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o
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.ong-term solution
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® \What do we do once the parallel scheduling of modules doesn't work
any more!

® \We need to split up our modules and algorithms into smaller pieces
(‘kernels’) that run parallel in the CPU or on GPUs

® [racking will be the most important piece
e |/O will rank second

® [Many competing technologies around:

N
o

o MIC, GPGPU, OpenCL, CUDA, ..

—
(e}

® 50 what’s the potential? |

| lEI::tr:r and ||
Tracking |jmuon finding

-
N

® |etshave alook at
what people already did...

I

D

L

Y
C =
0,5 1,0 1,5 2,0

Average time processing one event (sec)

Number of concurrently running modules

o

o
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Parallel Iracking
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® ATLAS already made some efforts
® Discovered a potential for improvement by an order of magnitude
® |mplemented seed finding for Level-2 trigger
® Raw data pre-processing for Level-2 trigger

® ALICE trigger using simplified GPU-based tracking

® \ery hot topic these days

o (CBM (@FAIR) and CMS have PhD students from KIT
on parallel tracking
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SIMD
(Single Instruction - Multiple Data)
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SIMD nstructions
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® Processors supportin’g Single Instruction, Multiple Data (5IMD) can execute
one instruction on multiple data

® Successive standards of SIMD Instruction sets exist (MMX, SSE, SSE2, ...,
AV X ) with ever increasing register size

® SSE2 e
256
® Basically all CPUs since 2003 128
64
® Jwo double precision floating point values 5
16
® AVX
8 I Parallelism growth:
' ' 4
® Since 201 | (Intel Sandy Brldge) growing dramatically over time.
2
® four double precision floating point values L
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http://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions/
http://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions/
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Just an ‘academic’ example:

double* x = new double[ArraySize];
double* y = new double[ArraySize];

for (size t j = 0; Jj< iterations ; J++)
{
for ( size t 1 = 0; 1 < ArraySize; ++ 1)
{
// evaluate polynom
y[i] = a_3 * ( x[1] * x[1] * x[1] )
+ a 2 * ( x[1] * x[1])
+ a l * x[i] + a 0;

}

SIMD example
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SIMD example
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Runtime Comparison Double Precision

—* G5SE4.2
— AUX

50

w—a Scalar

Just an ‘academic’ example:

3

= new double[ArraySize];

double* x =
double* y = new double[ArraySize];

Runtime [ms]

N
(=]

J++) //

001000 2000 3000 4000 5000 6000 7000 8000 9000
Element Number [1]

for (size t j = 0; j< iterations ;

{
for ( size t 1 = 0; 1 < ArraySize; ++ 1)
{
// evaluate polynom
= a 3 * ( x[1] * x[1] * x[1] )

y[i] =
+ a_2 * | X[i] * X[i])

+ a1l * x[1] + a 0;

}

+
recent gcc and -ftree-vectorize
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SIMD example
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Runtime Comparison Double Precision

20
Just an ‘academic’ example: e
¥
double* x = new double[ArraySize]; [
520

double* y = new double[ArraySize];

;3 //

for (size t j = 0; Jj< iterations ;
001000 2000 3000 4000 5000 6000 7000 8000 9000
Element Number [1]

{
ior ( Size—t 1= O; 1< ArraySize; ++ l) 60 RuntimgComparisonSinglel?recisio'n '
// evaluate polynom — ax
y[i] = a 3 * ( x[1] * x[1] * x[1] ) alar
+ a2 * ( x[i] * x[i]) ©

+ a1l * x[1] + a 0;

}
. |
gcc4.6 and -ftree-vectorize i A

001000 2000 3000 4000 5000 6000 7000 8000 9000

Runtime [ms]
3

-
N
o

Element Number [1]
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~_lurning that into reality
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Real World Example: Vertex Clustering ﬂ("

® Part of the CMSSW Reconstruction software

® Tracks are the input and the amount and location of primary vertices
along the Z-Axis is computed using the Deterministic Annealing
algorithm

= Nested loops over tracks and vertices have to be performed many
times — ldeal for vectorization

®= This clustering step represents 3% of the overall reconstruction runtime

Particle Tracks Particle Tracks
Vertex 2 Vertex 1
- O | O : >
-Z / 0 Beamline +Z
8 1st March 2012 | Thomas Hauth - Entwicklung und Evaluierung von automatischer Vektorisierung in CMS CERN | EKP

Version Runtime for 50 Events [s] Ratio [1]
Regular 26.64 1.0
Vectorized 19.96 0.74
Vectorized + vdt math 11.46 0.43
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The Memory Wall
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1000

100

10

Memory Speed Development

Processor-Memory
Performance Gap

a
O NMITUWONDOPO - NMDITWON DO
DO DODRXDNDRDGOCOCOOO O O O O
0 0000000000 OOOOOO O O

More than a factor 100 !
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Processor clock rates have been
increasing faster than memory
clock rates

Latency iIn memory access Is often
the major performance issue in
modern software applications

Larger and faster “on chip” cache
memories help alleviate the
problem but do not solve it

Often CPU just waiting for the
data

Cache Latency

I'he Memory Vvall

32kB L1 32kB L1 32kB L1 32kB L1
Data Cache Inst. Cache

Data Cache Inst. Cache

4
Core i7

3
Core 2 (45nm)

Main memory:
200-300 cycles

Phenom X4 h

0 10 20 30 40 50

Core 2 (65nm)

Nanoseconds (lower is better)

HLu HL2 B
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Caching
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® (aching is - at distance - no black magic

® Usually just holds content of recently accessed memory

locations

Cache

Line HEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE II/iJ/;F HEEEEEEEEEEEEEEEEEEEE
byte

® (aching hierarchies are rather common:

® 32KB L1 I-cache, 32KB L1 D-cache per core
» Shared by 2 HW threads

" 256 KB L2 cache per core
» Holds both instructions and data
» Shared by 2 HW threads

® 8MB L3 cache
» Holds both instructions and data
» Shared by 4 cores (8 HW threads)

Very tiny compared to main memory!
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Dominated by data movement NOW!

¢¢

We use only 15% of availiabl

€6 [ * ——— Branches: 16.462%
compudtia ’ IoNn__

O n o u b I e—D SIMD Computational: 0.000%

WwWOord L& Other: 44.682%

“flops
60% “active’

Stalls composition

— & L2 miss impact: 44.172%

—3 L2 hit impact: 21.537%

— LI dtlb miss impact: 3.987%

———3 LCP stalls impact: 1.216%

Store-fwd stalls impact: 29.088%

Loads blocked by unknown
address store impact: 80.790%

Loads overlapped with stores
impact: 12.310%

0 Loads spanning across cache
— line impact: 6.900%

Instruction type (ITLB miss rate = 0.01%)

Loads: 25.103%

_,—EI Stores: 13.753%

Mispredicted branches = 0.01486
0.100

that were mispredicted.

0.050

This value is the fraction of branches
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| ittle: Reminder - vtable
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The virtual table tells which code to execute when dealing
with polymorphism

RecoParticle Method Implementation
hits() RecoParticle::hits
RecoParticle::p4

Implementation
Muon::hits

RecoParticle::p4
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[I'he death for any cache
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et’s consider the following code and it's first execution:

for (DaughterIt it = m daughters.begin();
it != m daughters.end(); ++it)
{
m pd4.Add( it->p4());
}
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[I'he death for any cache

\ > 77 —»two T|ets + X, 60 1D

Create lterator

\

for (DaughterIt = m daughters.begin();
it != m daughters.end(); ++it)
{
m pd4.Add( it->p4());
}
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[I'he death for any cache
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for (DaughterIt it = m daughters.begin();
it != m daughters.end(); ++it)
{
m_p4.Add( (it3>p4());
}

vtable of lterator
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[I'he death for any cache
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for (DaughterIt it = m daughters.begin();
it != m daughters.end(); ++it)

{
m p4.Add( i 4());

}

vtable of object
+ object
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[I'he death for any cache
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for (DaughterIt it = m daughters.begin();
it != m daughters.end(); ++it)

{ .
m_p4.Add( lt")‘)"f — method code

}
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[I'he death for any cache
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Fetch into Cache
for\ (DaughterIt it = m daughters.begin();
it != m daughters.end(); ++it)

{
(m_p4).Add( it->p4());

}

Wednesday, August 28, 13



[I'he death for any cache
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for (DaughterIt it = m daughters.begin();

it != m daughters.end(); ++it)
{
m_p4 (Add)( it->pd());
}

vtable + method code
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[I'he death for any cache
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for (DaughterIt it = m daughters.begin();
it != m daughters.end(); ++it)

1
m p4.Add( it->p4());

}

=

every ugliness inside
the method code

Wednesday, August 28, 13



two T |ets + X, 60 b

That were quite a few cache misses,
for a rather simple operation:

m_pX += X
m_py *=y
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dentitying a way out
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® Cache misses are evil
® Put data that are used together closer together
® This usually crosses object boundaries
® But only rarely collection boundaries
®  “Arrays of Structs” vs. "Structs of Arrays”
® A particle collection becomes a collection single px, py, pz, ... vectors
® vtables cause a good fraction of cache misses
® |n principle every conditional statement spolls branch prediction and caching
® Design your software around the most efficient data structures
® “Data Centric Programming”

® Doesn’t data locality contradict OOP principles and requirements?

%&*1& M
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But I1s that real\}/ such a big problem!

*7T »two T|ets + X, 60 1

® OOP as dreamed of in the books

® [t combines data and algorithms into a single entity

® [t ensures that the developer does not need to code up the control flow explicitly.
® We already violate this with the software bus model

® [he stored objects are mainly only data

® We define the control flow explicitly

Real dataflow  Apparent dataflow Data T1

4—
®  Data transformations happen in modules a "\ Data T

Algorithm

Data T2, T3

Transient Event| DataT2
Data Store Data T4

| Software design at the big scale
' and efficient code at the small scale
cant be Iooked at in |soIat|on'
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VWhat's ahead of us!

» 77 2 two T |ets + X, B0 fb
® We have to choose with more thought when to follow which
programming paradigm
® Many identical data chunks & high throughput => data oriented

® Small number of objects & heterogenous data => object oriented

® For reconstruction we have to redesigh our data formats to become
even dumber

® [xpert operation !

® Helps with auto-vectorization as well!

® Analysis and other cases much more heterogenous
® We need a‘data-to-smart object” translation layer. But where!!

® A |ot of trial-and-error R&D needed
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Situation Summary
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® T[here are limits to “automatic” improvement of scalar performance:
® Power Wall: clock frequency can't be increased any more
® Memory Wall: access to data is limiting factor

® [xplicit parallel mechanisms and explicit parallel programming are
essential for performance scaling

® | HC experiments converged on basic design approach for parallel
applications

® Software design and efficient code have to go hand in hand

® Challenging times ahead

® Exciting times for curious programmers!
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That’s it :-)

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”
HEY! GET BACK >

TO WORK'

| xked




