

NATURAL ENVIRONMENT RESEARCH COUNCIL

Seismic Anisotropy Tomography from Glacial Microseismicity: an Antarctic Example

S.-K. Kufner^{1†}, J. Wookey², A. Brisbourne¹, C. Martin¹, T. Hudson³, J. M. Kendall³, A. Smith¹ ¹British Antarctic Survey, ²University of Bristol, ³University of Oxford; [†]now at KIT | DPT Karlsruhe | 25. Nov. 2022

www.kit.edu

Motivation Projected sea level rise until 2300 (Intergovernmental Panel on Climate Change)

Motivation Largest contribution to outflow from Ice Streams

- ightarrow Largest uncertainty in sea level rise predictions from contribution of West-Antarctica
- $\rightarrow \ \rightarrow \ \text{Largest}$ contribution to outflow of ice from ice-streams
- $\rightarrow \ \rightarrow \rightarrow$ Need to understand ice-stream dynamic!
- Ice-stream flow is is controlled by the frictional properties of the ice-bed interface & internal ice deformation

- $\rightarrow\,$ Largest uncertainty in sea level rise predictions from contribution of West-Antarctica
- $\rightarrow \ \rightarrow \ \text{Largest}$ contribution to outflow of ice from ice-streams
- $\rightarrow \ \rightarrow \rightarrow$ Need to understand ice-stream dynamic!
- Ice-stream flow is is controlled by the frictional properties of the ice-bed interface & internal ice deformation
- Sliding of a ice-stream over its bed can induce microseismicity
- Characteristics of these events carry information on bed properties and ice properties
- ightarrow Illuminate those through seismological studies

- $\rightarrow\,$ Largest uncertainty in sea level rise predictions from contribution of West-Antarctica
- $\rightarrow \ \rightarrow \ \text{Largest}$ contribution to outflow of ice from ice-streams
- $\rightarrow \ \rightarrow \rightarrow$ Need to understand ice-stream dynamic!
- Ice-stream flow is is controlled by the frictional properties of the ice-bed interface & internal ice deformation
- Sliding of a ice-stream over its bed can induce microseismicity
- Characteristics of these events carry information on bed properties and ice properties
- ightarrow Illuminate those through seismological studies

- Study area located ~40 km upstream the grounding line
- Flow speeds of ~1.1 m/day
- Ice thickness of ~2.2 km
- 35-station seismic network, operated during the 2018/19 field season for ~3 months

- Study area located ~40 km upstream the grounding line
- Flow speeds of ~1.1 m/day
- Ice thickness of ~2.2 km
- 35-station seismic network, operated during the 2018/19 field season for ~3 months

- Study area located ~40 km upstream the grounding line
- Flow speeds of ~1.1 m/day
- Ice thickness of ~2.2 km
- 35-station seismic network, operated during the 2018/19 field season for ~3 months
- Sharp change in bed character from presumably soft deformable to stiffer sediments; Icequakes mostly within stiff sediments

Kufner et al., 2021

- Study area located ~40 km upstream the grounding line
- Flow speeds of ~1.1 m/day
- Ice thickness of ~2.2 km
- 35-station seismic network, operated during the 2018/19 field season for ~3 months
- Sharp change in bed character from presumably soft deformable to stiffer sediments; Icequakes mostly within stiff sediments
- $\label{eq:carry} \rightarrow \mbox{ lcequakes carry information on } \\ \mbox{ bed properties }$

(Kufner et al., 2021; Hudson et al., 2021;

Hudson & Kufner, 2022)

Icequakes

• Frequency range: P-waves - 10 and 200 Hz & S-wave - 30 and 100 Hz

Icequakes Shear wave splitting

Icequakes Shear wave splitting

KIT & BAS

BEAMISH

British Antarctic

British

BEAMISH

uniaxial compression

no lateral compression and pure longitudinal extension

combination of pure and simple shear

Ice deformation a) Shear wave splitting analysis

Ice deformation a) Shear wave splitting analysis

180°

→ Results from inversion for multiple-layer ice fabric (neighbourhood algorithm; subsequently applying SWS-parameters to the orignial waveforms, following Wookey, 2012):

→ Results from inversion for multiple-layer ice fabric (neighbourhood algorithm; subsequently applying SWS-parameters to the orignial waveforms, following Wookey, 2012):

 \rightarrow Results & Interpretations:

- top 400 m: mix of horizontal shearing across flow and compression
- center: extension along flow
- bottom 500 m: vertical compression & recrystallitation in basal unit
- $\rightarrow\,$ lce fabric is a combination of ongoing deformation, the strain history and recrystallization processes

Largest uncertainty in SLR from contribution of W-Antarctica Largest contribution to outflow of ice from ice-streams

- \rightarrow Need to understand ice-stream dynamic!
- $\rightarrow\,$ Illuminate those through seismological studies

Bed properties:

 Icequake distribution illuminates type of bed character, which in turn feature distinct frictional properties (more info in Kufner et al., 2021)

Ice properties:

■ From SWS analysis: ice viscosity varies with depth, direction and component of deformation → single enhancement factor not sufficient to describe ice-streams (more info in Kufner et al., 2022 - in review)

Thank you for your attention & a big thanks to everybody who made this work possible!

