Improving the external trigger of AERA for extensive air showers at the Pierre Auger Observatory

Rukije Uzeiroska

University of Wuppertal

DPT 2022 - Karlsruhe

Bundesministerium für Bildung und Forschung November 26, 2022

Characteristics of extensive air showers

- Shower axis: Direction of the primary particle
- Properties of the shower front:
 - \blacktriangleright longitudinal width $\approx 1\,m$
 - ► lateral expansion ≈ few meters up to kilometers
- r: Distance to the shower axis
- θ: angle between the earth normal and the shower axis
- Shower core: intersection of the shower axis and the earth surface

Detection of extensive air showers with Pierre Auger Observatory

Pierre Auger Observatory

- World's largest observatory for the detection of high energy cosmic rays
- Located in Argentina
- Observatory: 3000 km²
 Karlsruhe: 173 km²
- Consists of several detector systems
- Relevant for this presentation:
 - Surface Detector (SD)
 - Auger Engineering Radio Array (AERA)

Pierre Auger Observatory

- Surface Detector:
 - Detection of charged particles
 - 1600 Measuring stations with water tanks
 - Surface of 3000 km²

- Auger Engineering Radio Array:
 - Detection of radio radiation
 - 154 Measuring stations with antennas
 - Surface of 17 km²

Pierre Auger Observatory

Current SD trigger of AERA

- Data taking of AERA with different internal and external trigger modes
- Relevant: external SD-trigger
- Trigger condition: D < 5 km
 - \Rightarrow Data rate too high
 - $\Rightarrow Low purity$ (approx. 10 of 8000 eventsreconstructable)
 - \Rightarrow Limited efficiency

Reconstruction of the shower axis and the distance to AERA

The online reconstruction method

Offline reconstruction method:

- Used in the Auger analysis software
- More information necessary than given at trigger level
- Takes an indefinite amount of time

Online reconstruction method requirements:

- Should take place at trigger level
- Only coordinates and time stamps of the SD stations known
- Only a few seconds available

⇒ Offline reconstruction unsuitable for the ext. SD trigger
⇒ Development of a fast reconstruction method with sufficient accuracy

Geometric relationships

- Definition of a shower axis
 - Direction vector
 - Shower core
- Inclination of the shower axis
 - ⇒ Shower front reaches the stations with a time delay
- Direction vector
 - $\Rightarrow\,$ Zenith angle θ
 - \Rightarrow Azimuth angle φ

Reconstruction of the distance r

- Shower core: median B of the coordinates of the triggered SD stations
- r: shortest distance between the shower axis and AERA

Trigger conditions

Lateral energy distribution of radio radiation

- Fit to the lateral energy distribution of the radio radiation of a real air shower
- ► *R_{CR}*: Cherenkov radius
- $r \ge 3 \cdot R_{CR} \Rightarrow$ Energy flux = 0
- Examination of r < 3 · R_{CR}(θ) as trigger condition, since the radio emission is hardly measurable outside

2500 Energiefluenz / eV/m² 000 1200 000 $r = R_{CR}$ 500 0+0.00.5 1.0 1.5 2.0 2.5 3.0 $r/R_{\rm CR}$

(cf M Gottowik)

Trigger studies on the number of stations n

 Reconstruction time strongly dependent on number of SD stations n

 \Rightarrow Limitation of *n* necessary

- Left: normalized cumulative distribution of *n* for 131310 real events
- Less than 1 % of the events with n > 9
- Trigger condition: events with n > 9 are going to be saved without reconstruction

Summary

Summary

- Goal: Optimization of the external SD trigger of AERA
- Online reconstruction method:
 - Little information necessary
 - Good agreement with the results of the offline reconstruction method
 - Very fast

- Trigger condition $r < 3 \cdot R_{CR}(\theta)$:
 - Increases the efficiency of the trigger
 - Doubles the purity of the data
- Trigger studies on n
 - Less than 1% of all events with n > 9

 \Rightarrow Newly developed trigger condition: n > 9 or $r < 3 \cdot R_{CR}(\theta)$

Backup

Reconstraction of the direction vector

- Direction vector of an air shower: e = (e_x, e_y, e_z)
- From geometric relationships follows:

$$\Rightarrow -v \cdot (t_i - t_j) = -\vec{e} \cdot (\vec{d}_i - \vec{d}_j)$$

v: Propagation velocity

 \Rightarrow In this case: $v \approx c$

*d*_i, *d*_j Location vectors of two SD stations with their trigger times *t*_i, *t*_j

Trigger studies on angle θ and distance r

- *R*_{CR} depends on the zenith angle *θ* of a shower
- 5528 real events are reconstructed with the online method
 - SD and RD data were reconstructed offline by Auger
 - As many of them as possible should be triggered
- Trigger efficiencies:
 - $r < 3 \cdot R_{CR}(\theta)$: 99.87 %
 - $r < 5 \cdot R_{CR}(\theta)$: 99.96%

Determination of a clear shower direction

Aufstellung des Gleichungssystems

$$\begin{array}{l} \mathsf{I} & -c(t_1 - t_0) = e_x \cdot (d_1 - d_0)_x + e_y \cdot (d_1 - d_0)_y + e_z \cdot (d_1 - d_0)_z \\ \mathsf{II} & -c(t_2 - t_0) = e_x \cdot (d_2 - d_0)_x + e_y \cdot (d_2 - d_0)_y + e_z \cdot (d_2 - d_0)_z \\ \mathsf{III} & e_x^2 + e_y^2 + e_z^2 = 1 \end{array}$$

- All possible three-station combinations are run through
- Number of combinations for n triggered SD stations:

$$M = \frac{n!}{(n-3)! \cdot 3!} \xrightarrow[n=14]{\text{Beispielereignis}} 364$$

Test the trigger condition

- Analysis of 131 310 additional events with the online reconstruction method
- Nearly all reconstructable events triggered by more than 3 or 4 SD stations
 - \Rightarrow Others are background
- D < 5 km: no shower reconstruction
 - ⇒ Triggers events that cannot be reconstructed
 - \Rightarrow Many background events

Comparison of the trigger conditions

- ▶ With *D* < 5 km:
 - Some triggered events not measurable for AERA
 - Some events measurable for AERA are not triggered
- Proportion of triggered events:
 - ► *D* < 5 km: 36.24 %
 - $r < 3 \cdot R_{CR}(\theta)$: 18.13%
- Purity of the data increases by a factor of two!