Numerical Investigation of Isospin Breaking Effects in 1+1D QED

Nuha Chreim

Bergische Universität Wuppertal

November 27, 2022

Introduction

- Brief reminder of continuum QCD
- What is Lattice Field Theory?
- Why is Lattice Field Theory interesting?
- How are Lattice calculations performed?
- Overview of the Schwinger Model (1+1D QED)
- Isospin Splitting in the Schwinger Model

QCD IN THE CONTINUUM

Continuum QCD

QCD-Lagrangian

$$\mathcal{L}_{QCD} = -\frac{1}{4} \underbrace{G_{\mu\nu}^{a} G_{a}^{\mu\nu}}_{\text{Gluons}} + \underbrace{\overline{\psi}(iD_{\mu}\gamma^{\mu} - m)\psi}_{\text{(Anti)fermions}}$$

Gluon field strength tensor

Covariant derivative

$$G^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^a_{bc} A^b_\mu A^c_\nu \qquad \qquad D_\mu = \partial_\mu + g A^a_\mu \frac{\lambda^a}{2i}$$

SU(3) gauge symmetry Peculiar feature: Negative β function (asymptotic freedom) \Rightarrow Interaction between particles gets **stronger** with increasing distance

The usual approach: Perturbation theory

AT THIS POINT, YOU'RE PROBABLY THINKING, "I LOVE THIS EQUATION AND WISH IT WOULD NEVER END!" WELL, GOOD NEWS! ŝ w -معر 31-5

TAYLOR SERIES EXPANSION IS THE WORST.

- Treat theory as free theory + small perturbation (basically a series expansion)
- Works well for weak coupling (QED, high energies in QCD)

LATTICE QCD

The general idea

OH NO. THIS HAS TWO UNKNOWNS. AMAZING WATCHING A PHYSICIST THAT'S GONNA BE REALLY HARD. AT WORK, EXPLORING UNIVERSES IN A SYMPHONY OF NUMBERS. UGHHHHHHH. IF ONLY I HAD STUDIED MATH, THINK. THERE'S GOTTA BE A WAY I COULD APPRECIATE THE TO AVOID DOING ALL THAT WORK ... BEAUTY ON DISPLAY HERE.

Path integral

 $\int \mathcal{D}\psi \mathcal{D}\bar{\psi} \mathcal{D}A \exp\left(iS[\psi,\bar{\psi},A]\right)$

Wick rotation

$$t \to i\tau \quad \Rightarrow \quad \mathcal{Z} = \int \mathcal{D}\psi \mathcal{D}\bar{\psi} \mathcal{D}A \exp\left(-S[\psi,\bar{\psi},A]\right)$$

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\psi \mathcal{D}\bar{\psi} \mathcal{D}A\mathcal{O}[\psi,\bar{\psi},A] \exp\left(-S[\psi,\bar{\psi},A]\right)$$

Analogous to system from statistical mechanics

- Infinite degrees of freedom impractical to implement on computers
- Instead discretize spacetime on finite lattice
- Gluons live on links, guarks/antiguarks on lattice sites
- Lattice regularization through cutoffs
 - Finite spacetime of spatial size *L*: $\Lambda_{IR} = \frac{2\pi}{L}$ Discrete lattice of spacing *a*: $\Lambda_{UV} = \frac{2\pi}{a}$

- Infinite degrees of freedom impractical to implement on computers
- Instead discretize spacetime on finite lattice
- Gluons live on links, quarks/antiquarks on lattice sites
- Lattice regularization through cutoffs
 - Finite spacetime of spatial size $L: \Lambda_{IR} = \frac{2\pi}{L}$
 - Discrete lattice of spacing $a: \Lambda_{UV} = \frac{2\pi}{a}$

- Infinite degrees of freedom impractical to implement on computers
- Instead discretize spacetime on finite lattice
- Gluons live on links, quarks/antiquarks on lattice sites
- Lattice regularization through cutoffs
 - Finite spacetime of spatial size $L: \Lambda_{IR} = \frac{2\pi}{L}$
 - $\circ~$ Discrete lattice of spacing a: $\Lambda_{UV}=rac{2\pi}{a}$
 - To recover continuum theory
 - $\circ~$ Continuum limit $a \rightarrow 0$
 - \circ Infinite volume limit $L
 ightarrow \infty$

Lattice needs to be fine enough to capture relevant details!

Lattice needs to be fine enough to capture relevant details!

Lattice needs to be fine enough to capture relevant details!

The Schwinger Model: An Overview

The Schwinger model

1+1D quantum electrodynamics

Lagrangian

$$\mathcal{L}_{QED} = -\frac{1}{4} \underbrace{F_{\mu\nu} F^{\mu\nu}}_{\text{Photons}} + \underbrace{\psi_{\rm f} (iD_{\mu}\gamma^{\mu} - m_{\rm f})\psi_{\rm f}}_{\text{(Anti)fermions}}$$

EM field strength tensor

Covariant derivative

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \qquad \qquad D_{\mu} = \partial_{\mu} - ieA_{\mu}$$

U(1) gauge symmetry

Peculiar feature: Confinement of fermions \Rightarrow Toy model for QCD

The Schwinger model

Peculiar feature: Confinement of fermions \Rightarrow Toy model for QCD

Bosonized Schwinger model

The two-flavor light field Lagrangian in the strong coupling limit $(\mu \gg m_{
m f})$

$$\mathcal{L}^{\mathsf{light}} = \frac{1}{2} (\partial_{\mu} \chi)^2 + \frac{1}{2\pi} M^2 N_M \left[\cos \sqrt{2\pi} \chi \right]$$

Schwinger mass

$$M = \left(e^{\gamma}\mu^{1/2}\sqrt{m_u^2 + m_d^2 + 2m_u m_d}\right)^{2/3} \qquad \mu = e\sqrt{\frac{2}{\pi}}$$

- Resulting Lagrangian resembles sine-Gordon model
- Three solutions
 - \circ soliton (π^+)
 - \circ antisoliton (π^-)
 - \circ lighter breather (π^0)

ISOSPIN SPLITTING IN THE SCHWINGER MODEL

Isospin

QCD

- Isospin-dubletts $u = |\frac{1}{2}, \frac{1}{2}\rangle$ $d = |\frac{1}{2}, -\frac{1}{2}\rangle$
- Pions differ

$$\pi^{+} = u\bar{d} = |1,1\rangle \quad \pi^{-} = d\bar{u} = |1,-1\rangle$$
$$\pi^{0} = \frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d}) = |1,0\rangle$$

• NLO contributions

$$M_{\pi^0}^2 - M_{\pi^\pm}^2 \propto \delta m^2$$

where $\delta m = m_u - m_d$

Isospin

QCD

- Isospin-dubletts $u = |\frac{1}{2}, \frac{1}{2}\rangle$ $d = |\frac{1}{2}, -\frac{1}{2}\rangle$
- Pions differ

$$\pi^{+} = u\bar{d} = |1,1\rangle \quad \pi^{-} = d\bar{u} = |1,-1\rangle$$

$$\pi^{0} = \frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d}) = |1,0\rangle$$

• NLO contributions

$$M_{\pi^0}^2 - M_{\pi^\pm}^2 \propto \delta m^2$$

where $\delta m = m_u - m_d$

Schwinger model

- Low energy conformal sector
- Mass splitting

$$M_{\pi^0} - M_{\pi^{\pm}} \propto \delta m e^{-\left(\frac{\mu}{m_{\rm f}}\right)^{\frac{2}{3}}}$$

 μ : Schwinger mass m_{f} : fermion mass

Georgi, 2020

Numerical results

$$\frac{M_{\pi^0} - M_{\pi^\pm}}{M_{\pi^\pm}} = k(m_{\rm f}) \exp\left(-\frac{1}{2} \left(\frac{\mu}{m_{\rm f}}\right)^{\frac{2}{3}}\right)$$

 $\mu {:}$ Schwinger mass $m_{\rm f}{:}$ fermion mass

CONCLUSION

Conclusion

- Lattice QCD: a non-perturbative approach to QCD
- Discretize spacetime on finite lattice
- Schwinger model: toy model with confined fermions
- Pions via bosonization
- Isospin breaking exponentially suppressed in the Schwinger model

Thank you for your attention!

nuha.chreim@uni-wuppertal.de

Васкир

sine-Gordon Model

Scalar field theory

Lagrangian

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 + \frac{m}{\beta^2} (1 - \cos \beta \phi)$$

14/13

 M_{π} vs. m_{f}

Masses of pions from solition and breather solutions in the standard sine-Gordon model

$$\frac{M_{\pi}}{e} = 2.008 \dots \left(\frac{m_{\rm f}}{e}\right)^{2/3}$$

Prefactor

• Lagrangian mass term

 $\mathcal{L} = m_{\rm f}(O_{+1} + O_{+1}^*) + \delta m(O_{-1} + O_{-1}^*)$

• Correlators

$$\begin{split} \langle 0|T(O_{\pm 1}(x)O_{\pm 1}^*(0))|0\rangle &= \frac{\xi m}{2\pi^2}(e^{\kappa_0}\pm e^{-\kappa_0})\frac{1}{\sqrt{-x^2+i\varepsilon}}\\ \text{with } \kappa_0 &= K_0\left(m\sqrt{-x^2+i\varepsilon}\right) \end{split}$$

• Asymptotic behavior of κ_0

$$\kappa_0 \xrightarrow{x \to \infty} -i \sqrt{\frac{\pi^3}{8mx}} e^{-i(mx - \frac{\pi}{4})}$$

- Mass scale is $(m_{\rm f}\mu)^{rac{1}{3}}$
- From mass perturbation theory $M_\pi \propto m_f^{rac{2}{3}}$
- Overall pion mass to leading order as $\delta m \xrightarrow{m_f \to 0} 0$

$$M_{\pi} \propto m_{f}^{\frac{2}{3}} \left(1 + \frac{2}{3} \left(\frac{\pi}{2} \right)^{\frac{1}{4}} \frac{\delta m}{m_{f}^{\frac{5}{6}} \mu^{\frac{1}{6}}} e^{-\frac{1}{2} \left(\frac{\mu}{m_{f}} \right)^{\frac{2}{3}}} \right)$$

Pion masses on the lattice

$$c_{\pi}(t) = \langle 0 | \pi(x, t) \bar{\pi}(y, 0) | 0 \rangle \approx C e^{-M_{\pi} t}$$

10% splitting

18/13