Multiboson measurements at CMS (DPS WW production)

Introduction

- Hadrons are "composite" --> possibility to have "n" multiple hard partonparton interactions (MPI) in a single hadron-hadron collision
- σ^{MPI} for a given interaction scale increases with \sqrt{s}

- First experimental evidence from CERN ISR
 - several measurements at Tevatron & LHC
- MPI sensitive to interplay between non-perturbative & perturbative QCD effects ---> models need to be "tuned" using data

Hadron colliders such as LHC ideal to study MPI

parton flux with small longitudinal momentum fraction "x" high energy low energy

Double parton scattering (DPS)

- Two distinct hard scatters in a single pp collision double parton scattering
- Cross section for a "nPS" process is suppressed as compared to SPS

- Probes the internal structure of a proton
- Background for rare SM and new physics processes
- Provides input for the tuning of MC simulations

0.6

0.8

Cross section formula for DPS

assuming longitudinal and transverse factorization of dPDFs

simplified expression for σ_{DPS} ···• pocket formula

$$\sigma_{AB}^{\text{DPS}} = \frac{m}{2} \frac{\sigma_A \sigma_B}{\sigma_{\text{eff}}} \quad \sigma_{\text{eff}} = \left[\int d^2 b t(b) \right]^{-1}$$

 σ_A , σ_B : SPS cross sections for two interactions m : 1 if A = B else 2

 σ_{eff} : effective cross section for DPS

DPS @CMS

Compact Muon Solenoid (CMS)

DPS with W±W±

- Golden channel for DPS production since SPS W[±]W[±] production suppressed at matrix element level due to presence of (two) extra jets
- Pythia8 predicts cross section for WW ---> 2l2v = 0.18 pb ± 40% (tune)
 @13TeV

- Sensitive to inter-parton correlations
- Insensitive to pileup effects & clean final state with fully leptonic W decays

Analysis strategy

- Analysis performed using pp collisions data at 13TeV...+ 138 fb⁻¹
- Signal: W[±]W[±] ··· + eµ or µµ final states with moderate p_T^{miss} ··· + modelled using Pythia8 & dShower with model uncertainties from Herwig
- Background contributions from prompt & nonprompt lepton productions
 - Prompt contributions …+ from MC simulations
 - Nonprompt contributions --> estimated using data _
- Boosted decision trees (BDT) based signal & background discrimination
- Signal cross section extracted using binned maximum likelihood (ML) fit to the shape of the BDT classifier

two leptons $e^{\pm}\mu^{\pm}$ or $\mu^{\pm}\mu^{\pm}$ $p_{T}^{\ell_{1}} > 25 \text{ GeV}, p_{T}^{\ell_{2}} > 20 \text{ GeV}$ $|\eta_{e}| < 2.5, |\eta_{\mu}| < 2.4$ $p_{T}^{\text{miss}} > 15 \text{ GeV}$ $m_{\ell\ell} > 12 \text{ GeV}$ $N_{\text{jets}} < 2$ $N_{\text{b-jets}} == 0$ veto on additional leptons veto on hadronic τ leptons $p_{T}^{\ell\ell} > 20 \text{ GeV}$ for $e^{\pm}\mu^{\pm}$ channel

event selection

Backgrounds

- Dominant contribution from WZ--+3lv; one lepton from Z is lost
 - Kinematically very similar to the signal process
- Nonprompt lepton contributions (W+jets, QCD multijets, and semi-leptonic ttbar)
- Prompt lepton contributions also from:
 - Wγ*, ZZ, SPS W±W±, VVV, ttbarV
 - Photon conversions $(W/Z\gamma)$ Only in eµ channel
 - Lepton charge misidentification (ttbar, DY, WW) (data-driven estimation)
- Negligible background contribution from pileup
- Two separate BDT classifiers for WZ & nonprompt

BDT classifiers

 Training variables …, kinematic differences between (uncorrelated) signal & (correlated) backgrounds

Statistical analysis

high purity bins

Results-i

Inclusive cross section

 80.7 ± 11.2 (stat) $^{+9.5}_{-8.6}$ (syst) \pm 12.1 (model) fb

Fiducial cross section

 6.28 ± 0.81 (stat) ± 0.69 (syst) ± 0.37 (model) fb

First observation of W±W± via DPS with 6.2 s.d. (observed)

exactly two dressed leptons $e^{\pm}\mu^{\pm}$ or $\mu^{\pm}\mu^{\pm}$ $p_{T}^{\ell_{1}} > 25 \text{ GeV}, p_{T}^{\ell_{2}} > 20 \text{ GeV}$ $|\eta_{e}| < 2.5$ (also vetoing the ECAL transition region), $|\eta_{\mu}| < 2.4$, $m_{\ell\ell} > 12 \text{ GeV}$ $p_{T}^{\ell\ell} > 20 \text{ GeV}$ for $e^{\pm}\mu^{\pm}$ channel

Using pocket formula

Summary

- Consistent with previous measurement from the same channel & other measurements involving W bosons from ATLAS & CMS
 - Improved precision
 - Tensions with most gluon induced processes