

Substructure tagging with mass and $p_{\rm T}$ dependent variable-R jet clustering and a soft drop veto

<u>Anna Benecke¹</u>, Anna Albrecht², Roman Kogler³ ¹UCLouvain, ²UHH, ³DESY

Motivation

 Often search for high mass resonances decaying into heavy particles like W, Z, H bosons or top quarks

Boosted Objects

Example: Top quark decay to W b

Boosted Objects

- With a fixed jet radius, the jet has a fixed p_T threshold to capture the decay
- At high p_T of the top quark the jet fixed radius is to large

Fixed R clustering

Variable R jet clustering

Grooming during jet clustering

QCD distribution is shifted to lower masses; **TOP** peak sharper

Anna Benecke

7

2 and 3-body decays

Idea:

- Combine 2 and 3 body decay
- One function $R_{\rm eff}(m, p_{\rm T})$
- Simultaneous tagging of top, W, Z and Higgs possible

First results

Summary

- Fixed radius clustering has a p_{T} threshold and a too big radius at high p_{T}
- Variable R algorithm allow to adapt and overcome these issues
- Working on the inclusion of 2-body decays

