q_T resummation for Higgs production via quark annihilation.

Rebecca von Kuk

Deutsches Elektronen-Synchrotron

German Conference of Women in Physics 2022

European Research Council

Established by the European Commission

Why q ar q o H?

- Currently: $q \bar{q}
 ightarrow H$ and gg
 ightarrow H are very hard to distinguish
- Very challenging to measure the Yukawa coupling for charm and lighter quarks
- Precise prediction for $q\bar{q} \rightarrow H$ allows Yukawa fit from initial state

Kinematic distributions

- Kinematic distributions and differential cross sections are particularly interesting
- Most Higgs bosons are produced with small transverse momentum q_T
- In this kinematic region the fixed order perturbative expansion is no longer valid
- Cross section diverges and needs to be resummed!

Divergent cross section due to large logs:

• Consider cross section for $q_T \ll Q = m_H$:

$$\begin{split} \sigma(q_T) &\sim 1 + \frac{\alpha_s}{4\pi} \left[c_{12} \ln_{q_T/Q}^2 + c_{11} \ln_{q_T/Q} + c_{10} \right] & \text{NLO} \\ &+ \left(\frac{\alpha_s}{4\pi} \right)^2 \left[c_{24} \ln_{q_T/Q}^4 + c_{23} \ln_{q_T/Q}^3 + c_{22} \ln_{q_T/Q}^2 + \ldots \right] & \text{NNLO} \\ &+ \left(\frac{\alpha_s}{4\pi} \right)^3 \left[c_{36} \ln_{q_T/Q}^6 + c_{35} \ln_{q_T/Q}^5 + c_{34} \ln_{q_T/Q}^4 + \ldots \right] & \text{N}^3 \text{LO} \end{split}$$

As q_T → 0 the logs become large α_s log²(q_T/Q) ≈ 1
 Switch from fixed order counting to logarithmic counting

Large logs.

Divergent cross section due to large logs:

• Consider cross section for $q_T \ll Q = m_H$:

As q_T → 0 the logs become large α_s log²(q_T/Q) ≈ 1
 Switch from fixed order counting to logarithmic counting

Divergent cross section due to large logs:

 q_T

large logs appear and spoil the convergence of the perturbative series

Resum logs to all orders to restore convergence!

- EFTs factorize the dynamics of the hard scale Q and the soft scale q_T
- Introduce scale: $\log(\frac{q_T}{Q}) = \log(\frac{\mu}{Q}) + \log(\frac{q_T}{\mu})$
- Soft-Collinear Effective Field Theory (SCET) separates the scales at cross section level

$$rac{\mathsf{d}\sigma}{\mathsf{d}q_T} = egin{bmatrix} H(\mu_H) & imes B(\mu_B) & \otimes B(\mu_B) & \otimes S(\mu_S) \ \end{bmatrix} \left[1 + \mathcal{O}\left(rac{q_T^2}{Q^2}
ight)
ight]$$

- Hard function: virtual contributions at scale Q
- Beam function: collinear radiation
- Soft function: soft, isotropic radiation

Resummed cross section:

- Solve RGE for $H(\mu_H)$, $B(\mu_B)$ and $S(\mu_S)$ to resum the logs
- Resummation generates Sudakov peak for $q_T \ll Q$
- for $q_T \sim Q$ the fixed order calculation is sufficient
- Transition connects fixed order and resummation region

Higgs production via quark annihilation.

Current Status:

- NNLL+NNLO prediction $bar{b}H$ for $y_q
 eq 0$ and $m_b = 0$ [Harlander, Tripathi, Wiesemann '14]
- prediction for $m_q \neq 0$ to NLO
- $c\bar{c}H$ and $s\bar{s}H$
 - no explicit predictions
 - strongly suppressed due to small Yukawa coupling

Goal:

- N³LL'+N³LO prediction für $b\bar{b}H$, $c\bar{c}H$, $s\bar{s}H$
- prediction including full mass effects $m_q
 eq 0$

Why do we need higher orders?

- uncertainties are obtained by varying resummation scales μ_{H}, μ_{B} and μ_{S}
- the uncertainty bands shrink for each additional order

Yukawa Fit.

- Gluon and quark induced processes can be distinguished by the shape of the q_T spectrum
- $b\bar{b}H$ vs. $c\bar{c}H$ vs. $s\bar{s}H$: also differences in the shape of the q_T spectrum, but a bit more subtle
- ► uncertainties for the channels overlap → more precise predictions needed to cleanly distinguish channels

more precise predictions needed

Yukawa Fit.

- Gluon and quark induced processes can be distinguished by the shape of the q_T spectrum
- $b\bar{b}H$ vs. $c\bar{c}H$ vs. $s\bar{s}H$: also differences in the shape of the q_T spectrum, but a bit more subtle
- ► uncertainties for the channels overlap → more precise predictions needed to cleanly distinguish channels

more precise predictions needed

Summary.

Resummation

- kin. distributions diverge for small values of q_T due to large logs
- spectra have to be resummed to obtain a meaningful prediction

Higgs production via quark annihilation

- Gluon fusion and quark annihilation show different shapes in the q_T spectrum
 - Application: Yukawa fit for charm and lighter quarks
- At NNLL+NLO the theory unc. are too large to clearly separate channels
 - more precise predictions needed!

Outlook

- N³LL'+ N³LO predictions for $b\bar{b}H$, $c\bar{c}H$ and $s\bar{s}H$
- Include full quark mass dependence

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 101002090 COLORFREE).

European Research Council

Established by the European Commission

Simplified model:

1 Factorize cross section : $\sigma(Q,p) = H(Q,\mu) \times S(p,\mu)$

Split large log with additional scale μ : $\log(\frac{p}{Q}) = \log(\frac{\mu}{Q}) + \log(\frac{p}{\mu})$

2 Find renormalization group $H(Q, \mu)$ [see $\mu \frac{d\alpha_s(\mu)}{d\mu} = \beta(\alpha_s)$]

$$\mu rac{\mathrm{d}}{\mathrm{d}\mu} H(Q,\mu) = \left[\Gamma(lpha_s)\log(rac{\mu}{Q}) + \gamma(lpha_s)
ight] H(Q,\mu)$$

3 Solve RGEs and run $\mu_H = Q$ und softer Skala $\mu_S = p$

$$\sigma_{res}(Q,p) = H(Q,\mu_H) imes \exp\left[\int_{\mu_H}^{\mu_S} rac{\mathrm{d}}{\mathrm{d}\mu}\left[...
ight]
ight] imes S(p,\mu_S)$$

cross section is resummed to all orders

Resummed cross section:

- Solve RGE to resum the logs
- Resummation generates Sudakov peak for $q_T \ll Q$
- for q_T ~ Q the perturbative calculation is sufficient

$$\underbrace{\sigma_{\text{match}}}_{\text{NNLL+ NLO}} = \underbrace{\sigma_{\text{fac}}(\mu_{\text{res}})}_{\text{NNLL}} + \underbrace{(\sigma_{\text{QCD}} - \sigma_{\text{fac}})}_{\text{NLO}}(\mu_{\text{FO}})$$

Logarithmic accuracy

 $\mathsf{REG:} \, \mu \tfrac{\mathrm{d} H(Q,\mu)}{\mathrm{d} \mu} = \left[\Gamma(\alpha_s) \log(\tfrac{\mu}{Q}) + \gamma(\alpha_s) \right] \times H(Q,\mu)$

order	Г	γ	$oldsymbol{eta}$	X
LL	1-Loop	-	1-Loop	LO
NLL	2-Loop	1-Loop	2-Loop	LO
NLĽ	2-Loop	1-Loop	2-Loop	NLO
NNLL	3-Loop	2-Loop	3-Loop	NLO
NNLĽ	3-Loop	2-Loop	3-Loop	NNLO
N ³ LL	4-Loop	3-Loop	4-Loop	NNLO
N ³ LĽ	4-Loop	3-Loop	4-Loop	N ³ LO

Theorieunsicherheiten

aktuell:

- Skalenvariation: $\mu_F \in \left[rac{\mu_F}{2}, 2\mu_F
 ight]$ und $\mu_R \in \left[rac{\mu_R}{2}, 2\mu_R
 ight]$
- Matching: Variation des übergangspunkts
- PDF Unsicherheiten
- berechne viele Verteilung und nehme die maximale Abweichung als Unsicherheit
- geringer Aufwand, aber Korrelationen der Unsicherheiten gehen verloren

Theory Nuisance Parameter:

- größerer Rechenaufwand, aber Korrelationen können berücksichtigt werden
- wertvolles Ergebnis für Experimentalphysiker: können auch Theorieunsicherheiten richtig korrelieren

Higgsproduktion am LHC

bottom and charm convergence

- convergence not as good as for $s\bar{s}H$
- mass effects are already an issue

