<u>Higgs pair production at the HL-LHC in the 2HDM:</u> insight into trilinear Higgs couplings

Kateryna Radchenko

in collaboration with Francisco Arco, Sven Heinemeyer and Margarete Mühlleitner

26th German Conference of Women in Physics

27.11.2022

1. MOTIVATION

A Higgs boson was discovered in 2012!

What we know:	What we do not know:	What we have to explain:
Scalar fields exist Higgs mechanism works	Higgs content Shape of the potential (see Olallas' talk)	Nature of Dark Matter Baryon Asymmetry of the Universe (see Lisa's talk)

OUR GOAL: What can we learn about triple Higgs couplings (and ultimately about the Higgs potential) from measurements at the HL-LHC?

2. WHY TRIPLE HIGGS COUPLINGS?

Experimental limits established so far: [-0.4 < λ_{hhh} / $\lambda_{hhh(SM)}$ < 6.3] (95% CL at LHC Run II)

- \rightarrow New physics around the corner?
- \rightarrow Higher luminosity at the **HL-LHC** is needed.

The measurement of Higgs properties and the strength of Higgs self interactions is one of the main goals of the HL-LHC.

3. OUR STRATEGY

- l. Choose a versatile theoretical framework \rightarrow the 2 Higgs doublet model
- 2. Choose a collider \rightarrow Large Hadron Collider (LHC)
- 3. Where to look for deviations? \rightarrow choose **observables**:
- <u>Observable 1</u>: total di-Higgs production cross section - Sensitivity to BSM triple Higgs couplings: κ_{λ} , λ_{hhH}
- Observable 2: invariant mass distribution
 - Information about κ_{λ}
 - Information about resonant production: m_H , Γ_H
 - Experimental challenges

4. THE THEORETICAL FRAMEWORK: 2HDM

$$\begin{bmatrix} \text{Santos, Barrosc: } \underline{arXiv:hep-ph/9701257} \end{bmatrix}$$
CP conserving 2HDM with two complex doublets with a softly broken \mathbb{Z}_2 symmetry $(\Phi_1 \rightarrow \Phi_1; \Phi_2 \rightarrow \Phi_2)$
(only Type I discussed here)
$$\begin{bmatrix} \psi_1 & \psi_2 & \psi_2 \\ \psi_1 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 \\ \psi_1 & \psi_2 & \psi_1 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_1 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_1 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_1 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 & \psi_2 \\ \psi_2 & \psi_2 \\ \psi_2 & \psi_2$$

→ couplings to fermions and gauge bosons of the SM-like Higgs change. (we need to be careful that all current data can be reproduced!) [Arco, Heinemeyer, Herrero: <u>arXiv2003.12684</u>]

 \rightarrow many more possibilities for "triple Higgs couplings" (we will look at two: $\kappa_{\lambda} \in [-0.5, 1.7], \lambda_{hhH} \in [-1.7, 1.6]$)

These lead to **different phenomenology** w.r.t the SM but also the contribution of the **heavy Higgses** in the loops.

Kateryna Radchenko Serdula

5. DI HIGGS PRODUCTION

[Plehn, Spira, Zerwas : arXiv:hep-ph/9603205]

- Triple Higgs couplings can be accessed through Higgs pair production
- The dominant process at a hadron collider is gluon fusion involving a quark loop

~ 1 out of 10^9 events in the LHC is a Higgs ~ 1 out of 10^{13} events in the LHC is a Higgs pair \rightarrow All calculations were done using a modified version of the code HPAIR

[Abouabid, Arhrib, Azevedo, El Falaki, Ferreira, Muhlleitner, Santos: arXiv:hep-ph/2112.12515]

Kateryna Radchenko Serdula

6. TOTAL DI-HIGGS PRODUCTION CROSS SECTION

 $m_{\rm H} = m_{\rm A} = m_{\rm H^{\pm}} = 1000 \text{ GeV}$ $m_{12}^2 = (m_{\rm H}^2 \cos^2 \alpha) / \tan \beta$

- NLO QCD corrections implemented in HPAIR
- Largest enhancements inside the allowed region (black contour) ~ $3\sigma_{SM} \rightarrow due$ to deviations in κ_{λ}
- **Expected sensitivity** to the deviation of the cross section: up to 8σ away from the SM

Kateryna Radchenko Serdula

7. INVARIANT MASS DISTRIBUTION

2) <u>Resonant production:</u>

the contribution of the heavy Higgses is important:

Kateryna Radchenko Serdula

CONCLUSIONS

- Many Beyond the Standard Model theories propose **extended Higgs sectors** and explain some open problems of the Standard Model.
- The next step to establish the Higgs potential is the measurement of triple Higgs couplings.
- Deviations of this parameter w.r.t. the Standard Model can affect the **Higgs pair production**.
- Measuring the total production cross section is not enough to disentangle the effects from deviations in the Higgs triple self-interactions and contribution of additional particles → invariant mass distributions are a complementary and promising avenue.

THANK YOU FOR YOUR ATTENTION!

SINGLE HIGGS PRODUCTION

BENCHMARK PLANES

 \rightarrow Special equation for m₁₂ that enlarges the area allowed by theoretical constraints.

Kateryna Radchenko Serdula

FEYNMAN RULES FOR 2HDM TRIPLE HIGGS COUPLINGS

Kateryna Radchenko Serdula

MORE ABOUT TOTAL CROSS SECTION

CONSTRAINTS P3

BP: Type I,
$$\cos(\beta - \alpha) = 0.1$$
, $\tan \beta = 10$, $m_{12}^2 = m_H^2 \cos^2 \alpha / \tan \beta$, $m_H = m_A = m_{H^{\pm}}$

INVARIANT MASS DISTRIBUTION: EFFECTS OF DEVIATIONS IN K

BP: Type I, $\cos(\beta - \alpha) = 0.1$, $\tan \beta = 10$, $m_{12}^2 = m_H^2 \cos^2 \alpha / \tan \beta$, $m_H = m_A = m_{H^{\pm}}$

Kateryna Radchenko Serdula

CONSTRAINTS P8

BP: Type I, $\cos(\beta - \alpha) = 0.2$, $\tan \beta = 10$, $m_{12}^2 = m_H^2 \cos^2 \alpha / \tan \beta$

Kateryna Radchenko Serdula

EFFECT OF THE MASS OF THE HEAVY HIGGS

We vary the mass of the heavy Higgs boson leaving the rest of the parameters of the model fixed.

Kateryna Radchenko Serdula

EFFECT OF THE TOTAL DECAY WIDTH

Kateryna Radchenko Serdula

EFFECT OF THE COUPLINGS

- What is the effect of the couplings involved in the resonant diagram on the invariant mass distributions ?

Kateryna Radchenko Serdula

Kateryna Radchenko Serdula

EXPERIMENTAL CHALLENGES: SMEARING

- Differential cross section measurements are affected by the finite resolution of particle detectors → observed spectrum is "**smeared**".
- We try to mimic this effect by artificially smearing the theoretical prediction introducing **Gaussian uncertainties** in the invariant mass.

