

Structure and reactivity of negatively charged platinum and palladium clusters

Karin Fink

CRC-1441:

Tracking the Active Site in Heterogeneous Catalysis for Emission Control

The Aim of TrackAct

"The goal of TrackAct is to **identify and track** the nature of the **active site**, to design and manipulate them from bottom-up across the various **length scales**, and - on a long-term vision - predict and actively control them during operation"

Activity depends on...

...specific particle sizes and support interaction.

CRC1441: Tracking the Active Site in Heterogenous Catalysis for Emission Control

2021-2024

- Over 10 million € budget
- KIT with partners at DESY and TUM

Reactions

Emission control

- CO/NO-oxidation, NO-reduction
- CH₄- and HC-oxidation
- Future: VOC-oxidation, etc.

Materials			
Cluster/Nanoparticles		Support	
	Platinum		CeO ₂
	Palladium		TiO ₂
	Platinum-Palladium		AI_2O_2

Outline

Aim: Obtain information about structure and reactivity of **Pt and Pd clusters in gas** phase from a **joint experimental and theoretical approach**.

Experiment: D. Bumüller, T. Rapps, M. M. Kappes, D. Schooss

Theory: A. G. Yohannes (INT,SCC), S. Kohaut, I. Kondov(SCC), K. Fink

- Experimental set up
- Quantum chemical methods
- Structure of small Pt_n⁻ clusters (n=6-13)
- Structural evolution of Pd⁻_n clusters (n=55-147)
- Reaction of truncated octahedron Pt_n clusters with oxygen (n=38-201)

Experiment (D. Schooss, INT)

Experimental setup of Trapped Ion Electron Diffraction technique

- Clusters are produced in the selected by charge/mass ratio
- Charge is necessary to trap them in the Paul trap
- Atom precise
- Structural information from electron diffraction pattern

From scattering function to structure

Structure models

DFT calculations

- Start from a guess structure
- Solve electronic Schrödinger equation
- Perform geometry optimization
- Converges to the next local minimum

Problems

- Several isomers with similar energy
- Problem to find all possibilities
- DFT depends on functional (GGA)
- Spin polarized calculations with different spin states necessary
- Influence of relativistic effects
- For large systems too expensive to obtain all guess structures from DFT
 → empirical potentials and semiempirical methods

Genetic algorithm (GA) for structure search

Flow chart of the global optimization procedure

Genetic algorithm (GA) for structure search

Flow chart of the global optimization procedure

1. Initial structures provided by the user or automatically generated.

2. Initial population structures are generated by distributing atoms in space based on bonding distances in reasonable range

$$\mathbf{r_{ij}} < \mathbf{a}(\ \mathbf{R_i} + \mathbf{R_j}) \qquad \mathbf{r_{ij}} < \mathbf{b}(\ \mathbf{R_i} + \mathbf{R_j})$$

 R_i and R_j atomic radius of atoms *i* and *j*, respectively. R_{ij} distance between these two atoms. *a* and *b* being a upper and lower atomic radii multiplier, respectively.

(Default: a = 1.2 and b = 0.7)

Genetic algorithm (GA) for structure search

Flow chart of the global optimization procedure

3. Population of local optimized structures is subject to evaluation based on their dynamically scaled reative energy, ε_i :

$$\epsilon_i = \frac{E_i - E_{min}}{E_{max} - E_{min}}$$

 E_i total energy of the given member of the population. E_{max} and E_{min} lowest and highest total energy of the population.

Genetic algorithm (GA) for structure search

4. Two clusters are selected from the population to be parents for mating, for it selection probability, p_i , is proportional to the value of the fitness function.

$$p_i = \left(rac{f_i}{\sum_i f_i}
ight) \;\;; \;\;\;\; f_i = e^{-a\epsilon_i}$$

Both clusters are sliced by random plane and complementeary fragments of the parents are combined together to produce a child structure.

Flow chart of the global optimization procedure

Genetic algorithm (GA) for structure search

Flow chart of the global optimization procedure

 \geq 30 structures with 10 children were explored.

Each structure in the population and every child requires a local structrure optimized using DFT.

- Turbomole
- def2-SVP basis set
- BP86 functional

Structure of small Pt_n⁻ clusters (n=6-13)

(1) C_{2v} 0.00 eV $R_w = 8.2 \%$

(2) D_{3d} +0.21 eV $R_w = 6.5 \%$

(3) $C_s + 0.22 \text{ eV}$

 $R_w = 17.8 \%$

(5) C_s +0.90 eV $R_w = 2.6 \%$

(1) $C_s = 0.00 \text{ eV}$ (2) $C_s = 0.24 \text{ eV}$ $R_w = 8.4 \%$ $R_w = 7.9 \%$

(4) C_2 +0.35 eV

 $R_{\rm w} = 4.2 \%$

(3) C_1 0.29 eV $R_w = 4.8 \%$

(5) C_1 0.53 eV (4) C_2 0.31 eV $R_w = 2.0 \%$ $R_w = 13.1 \%$

TPSS/def2-TZVP

Structure of small Pt_n⁻ clusters (n=6-13)

D. Bumüller, A. G. Yohannes, S. Kohaut, I. Kondov, M. M. Kappes, K. Fink, D. Schooss, J. Phys. Chem. A 126, 3502–3510 (2022). DOI:10.1021/acs.jpca.2c02142

15

Pd_n⁻ clusters: Transition to bulk Pd_{55}^{-}

Siesta software package

S. Kohaut, T. Rapps, K. Fink, D. Schooss, J. Phys. Chem. A. 123, 10940-10946 (2019).

Pd_n⁻ clusters: Transition to bulk Pd₁₀₅⁻

S. Kohaut, T. Rapps, K. Fink, D. Schooss, J. Phys. Chem. A. 123, 10940-10946 (2019).

Pd_n⁻ clusters

S. Kohaut, T. Rapps, K. Fink, D. Schooss, J. Phys. Chem. A. 123, 10940-10946 (2019).

Reaction of Pt clusters with oxygen

- In general fcc and bridge most stable
- relation between coordination number and binding energy for same site
- VASP software package PBE functional, Cut off energy 450 eV
- A. G. Yohannes, K. Fink, I. Kondov, Nanoscale Adv. 10.1039/D2NA00490A (2022).

CRC 1441

Reaction of Pt clusters with oxygen

- Partial oxidation
- A. G. Yohannes, K. Fink, I. Kondov, Nanoscale Adv. 10.1039/D2NA00490A (2022).
- Large data set, reusable for maschine learning

Summary and Outlook

- Several isomers for small Ptn- clusters
- Transition from cluster structures to bulk structures
- Reaction with oxygen

Next steps

26.11.2022

20

- Reaction with hydrogen
- Considering oxide support CeO₂, Al₂O₃

Siddhi Gojare, Juana Vázquez Quesada, Chengyu Jin

Acknowledgement

Theory

Asfaw Geremew Yohannes Stephan Kohaut Chengyu Jin Siddhi Gojare Juana Vazquez Quesada Ivan Konsov (SCC)

Experiment

Dennis Bumüller Thomas Rapps Manuel Renz Manfred Kappes Detlef Schooss