
Toward performance enhancements in CORSIKA 8

Profiling CORSIKA8

Pranav Sampathkumar

Presented at 5th CORSIKA 8 - Parallelism & Performance Meeting
January 27, 2022

1/20



Profilers

Gprof
GProf uses an hybrid instrumented and sampling approach to generate a callgraph and a
flatprofile to report the time spent in each function. Gprof is unsuitable for our purposes
because it doesnt account for inclusive costs. Gprof also doesnt profile multi threaded
applications and shared libraries.

Valgrind
Valgrind runs the code in a virtual machine simulating x86 architecture. Two tools in Valgrind,
Callgrind and Memcheck are very useful to us. Callgrind helps us keep track of the callgraph
along with inclusive costs.

VTune
VTune is a profiler specific to Intel. In addition to providing us with the information available in
Valgrind and perf, it provides automated performance analysis which help us spot hotspots.
The results provided in this presentation are gathered using VTune.

2/20



Profilers

Gprof
GProf uses an hybrid instrumented and sampling approach to generate a callgraph and a
flatprofile to report the time spent in each function. Gprof is unsuitable for our purposes
because it doesnt account for inclusive costs. Gprof also doesnt profile multi threaded
applications and shared libraries.

Valgrind
Valgrind runs the code in a virtual machine simulating x86 architecture. Two tools in Valgrind,
Callgrind and Memcheck are very useful to us. Callgrind helps us keep track of the callgraph
along with inclusive costs.

VTune
VTune is a profiler specific to Intel. In addition to providing us with the information available in
Valgrind and perf, it provides automated performance analysis which help us spot hotspots.
The results provided in this presentation are gathered using VTune.

2/20



Profilers

Gprof
GProf uses an hybrid instrumented and sampling approach to generate a callgraph and a
flatprofile to report the time spent in each function. Gprof is unsuitable for our purposes
because it doesnt account for inclusive costs. Gprof also doesnt profile multi threaded
applications and shared libraries.

Valgrind
Valgrind runs the code in a virtual machine simulating x86 architecture. Two tools in Valgrind,
Callgrind and Memcheck are very useful to us. Callgrind helps us keep track of the callgraph
along with inclusive costs.

VTune
VTune is a profiler specific to Intel. In addition to providing us with the information available in
Valgrind and perf, it provides automated performance analysis which help us spot hotspots.
The results provided in this presentation are gathered using VTune.

2/20



System Information

Hardware Information

• CPU Model: 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz

• Max MHz: 4700

• Cores: 8

Software Information

• Linux Kernel v5.16

• Cmake v3.22

• gcc v11.1

Compilation Flags

1 -DCMAKE_BUILD_TYPE=Debug -DCMAKE_CXX_FLAGS=-pg -DCMAKE_EXE_LINKER_FLAGS=-pg -DCMAKE_SHARED_LINKER_FLAGS=-pg

3/20



Environment

All the profiling here are done on master(Commit ID: 01ab0f56).
Example found ./examples/corsika.cpp is used.

Default Logging configuration (info) is used. All the modules are compiled using the default
optimization flags. (which is -O0 for all the modules expect Pythia (-O2))

This uses a earth like atmosphere (Linsley US) and magnetic field (WMM Model).

Zenith and Azimuthal angle is assumed to be zero.

4/20



Adaptive Step

Parameters
Primary Particle: mu- (1e5 GeV)

Call Stack

Figure 1: A sampling based approach to profiling: CPU samples the callstack every 10ms and then
consolidates the data based on how often a function is found in the call stack

5/20



Code Spot

ShowerAxis.inl

Figure 2: Using the Callstack, VTune also helps us spot lines of code which are performance hotspots

6/20



First Profile

Parameters
Primary Particle: Proton (1e6 GeV) Seed: 20

Summary

Figure 3: Summary: The Red Flags are recommendations by VTune for removing hotspots 7/20



Call Stack

Figure 4: Shows the time spend in various sections of the code. We see the time split between logging
the stack and performing the cascade

8/20



Code Spots

Cascade.inl Line 69, 79

9/20



Code Spots

Cascade.inl Line 350

10/20



Code Spots

ProcessSequence.inl Line 131

11/20



Code Spots

CombinedStack.inl Line 66

Figure 5: Memory management for strings is slowing down the code significantly

12/20



Memory Profile

Summary

Figure 6: Memory Profiles are usually done in an instrumental way, where the instruction pointer for
each allocation event is stored along with the call sequence

13/20



Details

Stack

Figure 7: Significant number of allocations for string manupulations

14/20



Code Block

Core.h Line 2076

Stack.inl Line 327

15/20



Second Profile (O3 Optimized)

Parameters
Primary Particle: Proton (1e6 GeV) Seed: 20

Summary

Figure 8: Summary: Surprisingly the O3 optimization flag is slower than the default optimization16/20



Call Stack

Figure 9: Call Stack: With the optimizations for memory management out of the way, we see time
being spent in PROPOSAL

17/20



Code Spots

Interaction.inl Line 38

18/20



Code Spots

ProposalProcessBase.hpp Line 49

19/20



To Do

• Computation size tradeoff in adaptive stepping (maybe reimplement Gauss-Kronrod ?
(Boost vs GSL))

• Alternate way to handle strings?

• Some immediate places to parallelize! (Like Log Stack)

• PROPOSAL: pow being used right ? (Data types/ Check for overusage)

20/20


