

γ measurements from $B_{s}^{0} \rightarrow D_{s}^{\pm} K^{\mp}(\pi\pi)$ @ LHCb

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

UB

S. Hansmann-Menzemer, Heidelberg University & CERN (with a lot of help from N. Tuning NIKHEF) on behalf of the LHCb collaboration

31.5.2022, Siegen

Outline

- Introduction
- Formalism
- $B_s^0 \rightarrow D^{\pm}_s K^{\mp}$
 - 3 fb⁻¹, JHEP 03 (2018) 059, <u>arXiv:1712.07428</u>
- $B_s^0 \rightarrow D_s^{\pm} K^{\mp} \pi^{\pm} \pi^{\pm}$

• 9 fb⁻¹, JHEP 03 (2021) 137, <u>arXiv:2011.12041</u>

- Comparison
- Outlook

CKM: A Quick Reminder

matrix to transform weak- and mass-eigenstates

$$\begin{bmatrix} |d'\rangle\\|s'\rangle\\|b'\rangle \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} |d\rangle\\|s\rangle\\|b\rangle \end{bmatrix}.$$

matrix has imaginary numbers (first order approximation)

$$\left(\begin{array}{ccc} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{array} \right)$$

matrix is unitary

$$V^{+}V = \begin{pmatrix} V^{*}_{ud} & V^{*}_{cd} & V^{*}_{td} \\ V^{*}_{us} & V^{*}_{cs} & V^{*}_{ts} \\ V^{*}_{ub} & V^{*}_{cb} & V^{*}_{tb} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} V^{*}_{ub} & V_{cb} & V^{*}_{cb} \\ V^{*}_{ub} & V_{ud} + V^{*}_{cb} V_{cd} + V^{*}_{tb} V_{tb} = 0 \end{pmatrix}$$

LHC-B Letter-of-Intent 1995

LHC-B LETTER OF INTENT A Dedicated LHC Collider Beauty Experiment for Precision Measurements of CP-Violation

y Combinations

from direct measurements (tree level decays): (72.1^{+4.1}_{-4.5})^o

from indirecte measurements (loop induced measurements):

 $(65.7 + 0.9)_{-2.7}^{\circ})^{\circ}$ (CKM fitter) or $(65.8 \pm 2.2)^{\circ}$ (UT fitter)

LHCb y Combination

Measurements presented today are the (only) input to the LHCb $\rm B_{s}$ combination!

History

• 2021: First Time dependent CP violation in $B_s^0 (\rightarrow K^+ K^-)$

CP Violation in Interference between Mixing and Decay

Similar size of amplitudes

- \rightarrow large interference
- \rightarrow large sensitvity to phases

δ_s : strong phase difference

CP Violation in Interference between Mixing and Decay

CP Violation in Interference between Mixing and Decay

Time Dependent Decay Rates

$$\frac{\mathrm{d}\Gamma_{B_s^0 \to f}(t)}{\mathrm{d}t} = \frac{1}{2} |A_f|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right]$$
$$+ C_f \cos\left(\Delta m_s t\right) - S_f \sin\left(\Delta m_s t\right) \right],$$
$$\frac{\mathrm{d}\Gamma_{\bar{B}_s^0 \to f}(t)}{\mathrm{d}t} = \frac{1}{2} |A_f|^2 \left| \frac{p}{q} \right|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right]$$
$$- C_f \cos\left(\Delta m_s t\right) + S_f \sin\left(\Delta m_s t\right) \right],$$

Assuming no CPV in mixing and no CPV in decay

$$C_{f} = \frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}} \bigoplus -C_{\overline{f}} = -\frac{1 - |\lambda_{\overline{f}}|^{2}}{1 + |\lambda_{\overline{f}}|^{2}}$$
$$S_{f} = \frac{2\mathcal{I}m(\lambda_{f})}{1 + |\lambda_{f}|^{2}}, \quad A_{f}^{\Delta\Gamma} = \frac{-2\mathcal{R}e(\lambda_{f})}{1 + |\lambda_{f}|^{2}}$$
$$S_{\overline{f}} = \frac{2\mathcal{I}m(\lambda_{\overline{f}})}{1 + |\lambda_{\overline{f}}|^{2}}, \quad A_{\overline{f}}^{\Delta\Gamma} = \frac{-2\mathcal{R}e(\lambda_{\overline{f}})}{1 + |\lambda_{\overline{f}}|^{2}}$$

Need flavor tagging and need to resolve fast mixing to access $C_{\rm f}$ and $S_{\rm f}$

$$\begin{array}{ll} \text{f:} & D^{+}{}_{s}\textit{K}^{*} \\ \hline \\ \hline \text{f:} & D^{*}{}_{s}\textit{K}^{*} \end{array} \qquad \qquad \lambda_{f} = \frac{q}{p}\frac{\bar{A}_{j}}{A_{j}} \end{array}$$

$\mathbf{A}_{\mathrm{f}}{}^{\boldsymbol{\Delta}\boldsymbol{\Gamma}}\!,\,\mathbf{S}_{\mathrm{f}}\,\,\mathbf{\&}\,\,\mathbf{C}_{\mathrm{f}}\,\,\longrightarrow\,\,\mathbf{r}_{\mathrm{DsK}}\!,\,\boldsymbol{\gamma}\,\,\,\mathbf{\&}\,\,\boldsymbol{\delta}$

$$\frac{\mathrm{d}\Gamma_{B_s^0 \to f}(t)}{\mathrm{d}t} = \frac{1}{2} |A_f|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right. \\ \left. + C_f \cos\left(\Delta m_s t\right) - S_f \sin\left(\Delta m_s t\right) \right], \\ \frac{\mathrm{d}\Gamma_{\bar{B}_s^0 \to f}(t)}{\mathrm{d}t} = \frac{1}{2} |A_f|^2 \left| \frac{p}{q} \right|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right. \\ \left. - C_f \cos\left(\Delta m_s t\right) + S_f \sin\left(\Delta m_s t\right) \right],$$

$$\begin{split} C_{f} = & \frac{1 - r_{D_{s}K}^{2}}{1 + r_{D_{s}K}^{2}} \,, \\ A_{f}^{\Delta\Gamma} = & \frac{-2r_{D_{s}K}\cos(\delta - (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}} \,, \quad A_{\overline{f}}^{\Delta\Gamma} = \frac{-2r_{D_{s}K}\cos(\delta + (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}} \,, \\ S_{f} = & \frac{2r_{D_{s}K}\sin(\delta - (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}} \,, \quad S_{\overline{f}} = \frac{-2r_{D_{s}K}\sin(\delta + (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}} \,. \end{split}$$

$$r_{D_sK} \equiv |\lambda_{D_sK}| = |A(\overline{B}^0_s \to D^-_s K^+) / A(B^0_s \to D^-_s K^+)|$$

Need to measure decays to $D_s^+K^-$ and $D_s^-K^+$ to disentangle γ and δ .

A note on conventions:

1) We use: $\Delta \Gamma_s = \Gamma_L - \Gamma_H > 0$

2) Opposite convention is equivalent if at the same time $A^{\Delta\Gamma} \rightarrow$ - $A^{\Delta\Gamma}$

$B_s^0 \rightarrow D_s^{\pm} K^{\mp}$ Analysis

- obtain B_s^0 signal sample:
- $B_s^0 \text{ or } B_s^0$:
- decay time:
- result:

3D fit to m_{Bs}, m_{Ds}, particle identification flavour tagging resolution & acceptance decay time fit

$B_s^0 \rightarrow D_s^{\pm} K^{\mp}$ Analysis: mass fit

- · Need to (statistically) separate signal from background
- Backgrounds:
 - Combinatorial
 - Partially reconstructed background $(B_s^0 \rightarrow D_s^* K^{\mp})$, etc)
 - Misidentified background $(B_s^{0} \rightarrow D^{\pm}_{s} \pi^{\mp})$

$B_s^0 \rightarrow D_s^{\pm} K^{\mp}$ Analysis: Flavour Tagging

• B_s^0 or $\overline{B_s^0}$:

• Use $B_s^0 \rightarrow D_s^+ \pi^-$ to calibrate!

$B_s^0 \rightarrow D_s^{\pm} K^{\mp}$ Analysis: Decay Time

Resolution

(use prompt D_{s}^{+} calibrate)

Acceptance

(use $B_s^0 \rightarrow D_s^+ \pi$ to calibrate)

$B_s^0 \rightarrow D_s^{\pm} K^{\mp}$ Analysis: Fit Result

analysis statistical limited

$B_s^0 \rightarrow D_s^{\pm} K^{\mp}$ Analysis: Result

$$\gamma = (128 \,{}^{+17}_{-22})^{\circ}$$
$$\delta = (358 \,{}^{+13}_{-14})^{\circ}$$
$$r_{D_sK} = 0.37 \,{}^{+0.10}_{-0.09}$$

$B_s^0 \rightarrow D_s^{\pm} K^{\mp} \pi^+ \pi^-$ Analysis

Conceptually identical to the $B_s^{0} \rightarrow D^{\pm}_{s}K^{\mp}$ analysis

- obtain B_s⁰ signal sample:
- $B_{s}^{0} \text{ or } B_{s}^{0}$:
- decay time:
- result:

3D fit to m_{Bs}, m_{Ds}, particle identification flavour tagging resolution & acceptance decay time fit

+ amplitude analysis

$B_s^0 \rightarrow D_s^{\pm} K^{\mp} \pi^+ \pi^-$ Analysis: mass fit

- · Need to (statistically) separate signal from background
- Backgrounds:
 - Combinatorial
 - Partially reconstructed background $(B_s^0 \rightarrow D_s^* K^{\mp})$, etc)
 - Misidentified background $(B_s^0 \rightarrow D^{\pm}_s \pi^{\mp})$

$B_s^0 \rightarrow D_s^{\pm} K^{\mp} \pi^+ \pi^-$ Analysis

• Flavour Tagging

(b) Run 2 data.

	$\epsilon_{ m tag}[\%]$	$\langle \omega \rangle [\%]$	$\epsilon_{\text{eff}}[\%]$
Only OS	11.91 ± 0.04	37.33 ± 0.41	1.11 ± 0.05
Only SS	40.95 ± 0.08	42.41 ± 0.29	1.81 ± 0.10
Both OS-SS	28.96 ± 0.12	35.51 ± 0.32	3.61 ± 0.13
Combined	81.82 ± 0.15	39.23 ± 0.32	6.52 ± 0.17

Decay time acceptance

$B_s^{0} \rightarrow D_s^{\pm} K^{\mp} \pi^{+} \pi^{-}$: Decay Time Fit

Fit parameter	Value
C_f	$0.631 \pm 0.096 \pm 0.032$
$A_f^{\Delta\Gamma}$	$-0.334 \pm 0.232 \pm 0.097$
$A^{\Delta\Gamma}_{\bar{f}}$	$-0.695 \pm 0.215 \pm 0.081$
\dot{S}_{f}	$-0.424 \pm 0.135 \pm 0.033$
$S_{\overline{f}}$	$-0.463 \pm 0.134 \pm 0.031$

$\overline{}$		
	\searrow	

Parameter	Model-independent	
$ \begin{array}{c} r \\ \kappa \\ \delta \end{array} $	$\begin{array}{c} 0.47 \substack{+ \ 0.08 \ + \ 0.02 \\ - \ 0.08 \ - \ 0.03 \\ 0.88 \substack{+ \ 0.12 \ + \ 0.04 \\ - \ 0.19 \ - \ 0.07 \\ - 6 \substack{+ \ 10 \ + \ 2 \\ - 4 \end{array}} \bullet$	coherence factor integrated over the entire phase space
$\gamma - 2\beta_s$ [°]	$\begin{array}{c} -12 & -4 \\ 42 & +19 & +6 \\ -13 & -2 \end{array}$	

$B_s^0 \rightarrow D_s^{\pm} K^{\mp} \pi^+ \pi^-$: Amplitude Analysis

Comparison: $B_s^0 \rightarrow D_s^{\pm} K^{\mp} \pi^{+} \pi^{-} versus B_s^0 \rightarrow D_s^{\pm} K^{\mp}$

Need strong and weak phase difference to get CPV in Interference of mixing and decay

Quantum oscillations of neutral particles with the beauty quark / Veronesi, Michele CERN-THESIS-2021-193

Comparison: $B_s^0 \rightarrow D_s^{\pm} K^{\mp} \pi^+ \pi^- \text{ versus } B_s^0 \rightarrow D_s^{\pm} K^{\mp}$

γ from $B_s^0 \rightarrow D^{\pm}_s K^{\mp} \pi^+ \pi^-$ and $B_s^0 \rightarrow D^{\pm}_s K^{\mp}$

• Contribution to γ average

	Measurement	χ^2	No. of obs.
Beauty sector	$B^{\pm} \rightarrow Dh^{\pm}, D \rightarrow h^{\pm}h'^{\mp}$	2.71	8
	$B^{\pm} \rightarrow Dh^{\pm}, D \rightarrow h^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	7.36	8
	$B^{\pm} \rightarrow Dh^{\pm}, D \rightarrow h^{\pm}h'^{\mp}\pi^0$	7.14	11
	$B^{\pm} \rightarrow Dh^{\pm}, D \rightarrow K^0_S h^+ h^-$	4.67	6
	$B^{\pm} \rightarrow Dh^{\pm}, D \rightarrow K_S^0 K^{\pm} \pi^{\mp}$	7.57	7
	$B^{\pm} \rightarrow D^* h^{\pm}, D \rightarrow h^{\pm} h'^{\mp}$	7.31	16
	$B^{\pm} \rightarrow DK^{*\pm}, D \rightarrow h^{\pm}h^{\prime\mp}(\pi^{+}\pi^{-})$	3.71	12
	$B^0 \rightarrow DK^{*0}, D \rightarrow h^{\pm}h^{\prime\mp}(\pi^+\pi^-)$	9.45	12
	$B^0 \rightarrow DK^{*0}, D \rightarrow K^0_S h^+ h^-$	3.26	4
	$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}, D h^{\pm}h'^{\mp}$	1.34	11
	$B_s^0 \to D_s^{\mp} K^{\pm}$	5.71	5
	$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	2.88	5
	$B^0 \to D^{\mp} \pi^{\pm}$	0.00	2

LHCb Coll., <u>arXiv:2110.02350</u> "Simultaneous determination of CKM angle γ and charm mixing parameters" JHEP 12 (2021) 141

Conclusions

- Precision measurements important to scrutinize the Standard Model
- Precision measurements reach very high mass scales
- Precision measurements are not yet precise enough

2021

2030 (Belle II 50ab⁻¹,LHCb 50 fb⁻¹)