LHCb outlook for non-leptonic decays (including a_{fs} and the determination of γ) Status and prospects of non-leptonic B meson decays

"The mascots of Siegen, miner Henner and iron industry worker Frieder, meet the Higgs particle"

Collaborative Research Center IRR 2

The University of Manchester

N. Skidmore on behalf of the LHCb collaboration June 2022

BEAUTY2CHARM

LHC

European Research Council

Established by the European Commission

The many measurements of γ ...

CKM phase *γ* can be measured solely with **tree-level** *B->Dh* decays

In the absence of NP effects at tree-level - SM benchmark- negligible theoretical uncertainties when interpreting observables in terms of γ

Compare to γ interpretations from decays susceptible to NP contributions \rightarrow sensitive to **BSM effects at** mass scales greater than those accessible directly

Choice of measured observables is dependent on the method that is most appropriate for the *D* decay analysed - all sensitive to the same *B* decay parameters, r_B^X , δ_B^X , $\gamma \rightarrow \text{combination fits}$

Here we discuss TI measurements, for TD see Stephie's talk

2

CP observables in $B^{\pm} \rightarrow D^{(*)}h^{\pm}$ decays

Use $B^{\pm} \rightarrow D^{(*)}h^{\pm}$ decays to measure experimentally robust CP observables in GLW and ADS modes

- 28 CP observables are measured partial width ratios, double ratios and A_{CP}s
- Can be interpreted in terms of $\gamma, r_B^{DK}, \delta_B^{DK}, r_B^{D\pi}, \delta_B^{D\pi}, r_B^{D^*K}, \delta_B^{D^*K}, r_B^{D^*\pi}, \delta_B^{D^*\pi}$

$r_D^{K\pi}, \delta_D^{K\pi}$ and charm mixing parameters x and y taken from HFLAV average Eur. Phys. J. C (2021) 81: 226

CP observables in $B^{\pm} \rightarrow D^{(*)}h^{\pm}$ decays

First measurements of CP observables using $B^{\pm} \rightarrow D^{*}h^{\pm}$ in ADS modes

 $D^* \rightarrow D^0 \pi^0 / \gamma$ is partially reconstructed - missing neutral

Reconstruction efficiency for low momentum neutral pions and photons is low - partial reconstruction provides significantly larger yields

Small m_{D^*} -m_D and angular structure of D^* -> $D^0 \pi^0/\gamma$ decays result in distinctive line shapes in $m(Dh^{\pm})$ vields can be obtained

Measurements of $\mathcal{B}(B^- \to D^{*0}\pi^-)$ and $\mathcal{B}(D^{*0} \to D^0 \pi^0)$ are made and agree with current world averages

Demonstrates method of partial reconstruction accurately measures $B^{\pm} \rightarrow D^{*}h^{\pm}$ modes despite presence of multiple partially reconstructed background sources

HEP

CP observables in $B^{\pm} \rightarrow D^{(*)}h^{\pm}$ decays

16 independent samples fit simultaneously

All CP observables measured to worlds best precision

Profile likelihood contours dominated by $B^{\pm}-DK^{\pm}$ - good agreement with LHCb/B factory results

Constructed using charm parameters taken as external constraints from HFLAV average but these modes provide significant sensitivity to these parameters \rightarrow motivates combination of gamma and charm results

5

8.7.65

- Admixture of CP-odd and CP-even eigenstates
- Integration over 3-body D decay phasespace dilutes A_{CP}
- CP-even fractions, $F_{+}^{hh\pi0}$, measured at CLEO-c

6

- Integration over 3-body *D* decay phasespace dilutes sensitivity
- Dilution factor, $\kappa_{\rm D}$, and average strong phase, $\delta_{\rm D}$ taken from BESIII/ CLEO-c/ LHCb

9fb-1 Constraints on γ from $B^{\pm} \rightarrow Dh^{\mp}$ with $D \rightarrow h^{\pm}h^{\overleftarrow{\tau}}\pi^{0}$ $9\,{\rm fb}^{-1}$ $9\,\mathrm{fb}^{-1}$ $B^- \rightarrow [K^- \pi^+ \pi^0]_D K^ {}^{9}\text{fb}^{-1}$ $B^{-} \rightarrow [\pi^{-}K^{+}\pi^{0}]_{D}K^{-}$ $B^+ \rightarrow [K^+\pi^-\pi^0]_D K^+$ $9\,{\rm fb}^{-1}$ 108 ک rXiv:2112.10617 $B^+ \rightarrow [\pi^+ K^- \pi^0] \circ K^-$ / 700 Wei 600 World's best precision on Suppressed Favoured - 500 $B^0_{-} \rightarrow [\pi^{\mp}K^{\pm}\pi^0]_D K^{\mp}(\pi^{\pm})$ Quasi-ADS observables 400ĝ 300 · 200 **First observation** 1 1 11 11 16000 LHCb $9\,\mathrm{fb}^{-1}$ $9 \, \mathrm{fb}^{-1}$ 14000 9 fb^{-1} $B^- \rightarrow [\pi^- K^+ \pi^0]_D \pi^ B^- \rightarrow [K^- \pi^+ \pi^0]_D \pi^-$ 9 fb of $B^{\mp} \rightarrow [\pi^{\mp} K^{\pm} \pi^{0}]_{D} K^{\mp}$ at >7 σ ! $B^+ \rightarrow [K^+\pi^-\pi^0]_D\pi^-$ 200 (c) 12000 $B^+ \rightarrow [\pi^+ K^- \pi^0]_{\rho} \pi^+$ $r_B^{DK} \approx 20 \times r_B^{D\pi}$ 150 8000 ubmitted to JHE 6000 $B \rightarrow DX$ low-mass part, rec 4000 -2000 -5000 5000 25 5450 5675 $m([K^+\pi^-\pi^0]_Dh^+)$ [MeV/ c^2] 5450 5675 5000 5225 5450 5675 5000 5225 5450 5675 $m([K^{-}\pi^{+}\pi^{0}]_{D}h^{-})$ [MeV/c²] $m([\pi^-K^+\pi^0]_-h^-) [MeV/c^2]$ $m([\pi^+ K^- \pi^0] - h^+) [MaV/c^2]$ 180 ¹⁸⁰ ο¹⁸⁰ ο²⁹ 160 0 Second solution 68% C.L LHCb \$ 160 B 95% C.L. $(56^{+24}_{-19})^{\circ}$ $9 \, {\rm fb}^{-1}$ Interpreted as γ , r_{B} , δ_{B} using 99.7% C.L inputs from CLEO-c/BES III Consistent with LHCb γ Global minimum 140 140Due to trigonometric $\gamma = (145^{+9}_{-39})^{\circ}$ 120 ambiguities 4 solutions for γ 120 100 100 $r_B = (9.3^{+1.0}_{-0.9}) \times 10^{-2}$ 68% C.L. 95% C.L. 80 99.7% C.L. 80 2021 LHCb γ combo $\delta_B = (122^{+19}_{-23})^{\circ}$ 50 100 150 8 25 50 75 100 Y

~ [0]

Measurement of gamma in $B^{\pm} \rightarrow D[Kshh]h^{\pm}$

Can construct yield observables for each bin i

$$N_{+i}^{-} = \mathbf{h}_{B^{-}} \left[F_{+i} + \left(\left(x_{-}^{DK} \right)^{2} + \left(y_{-}^{DK} \right)^{2} \right) F_{-i} + 2\sqrt{F_{i}F_{-i}} \left(x_{-}^{DK} \mathbf{c}_{+i} + y_{-}^{DK} \mathbf{s}_{+i} \right) \right]$$

Normalisation absorbs production and detection asymetries Efficiency corrected fraction of events that fall in bin i

Cosine/sine of strong phase difference between D^0 and \overline{D}^0 averaged over bin i

c_i and s_i inputs taken from combination of BESIII and CLEO results PRD101 (2020) 112002, PRD102 (2020) 052008

Use of $D\pi$ channel controls selection and reconstruction effects

Analyse $B^{\pm} \rightarrow D[Kshh]h^{\pm}$ decays in bins of *D*-decay phasespace

To access gamma need knowledge of how strong phase of *D* decay varies over phasepace

$$A_D(m_-^2,m_+^2) = |A_D(m_-^2,m_+^2)|e^{i\delta_D(m_-^2,m_+^2)}$$

 F_i normally determined through semileptonic decays (no CPV) however to increase sensitivity B->Dπ channel is fit simultaneously with B->DK

Negligible contribution to gamma precision from B->D π as $r_B^{DK} \approx 20 \times r_B^{D\pi}$

See also Martin's Belle (II) talk

Measurement of gamma in $B^{\pm} \rightarrow D[Ks0hh]h^{\pm}$

9fb-1

Measurement of gamma in $B^{\pm} \rightarrow D[Kshh]h^{\pm}$

$$egin{aligned} &\gamma = (68.7^{+5.2}_{-5.1})^\circ, \ &r_B^{DK^\pm} = 0.0904^{+0.0077}_{-0.0075}, \ &\delta_B^{DK^\pm} = (118.3^{+5.5}_{-5.6})^\circ, \ &r_B^{D\pi^\pm} = 0.0050 \pm 0.0017, \ &\delta_B^{D\pi^\pm} = (291^{+24}_{-26})^\circ. \end{aligned}$$

Most precise measurement of gamma from a single analysis

Systematic due to precision of strong phase parameters is of similar size to total LHCb-related systematic ~ 1 degree

9fb-1

11

Determine CP asymmetry of suppressed modes using favoured mode as a normalisation channel

Small coherence factor - bin phasespace into 4 regions such that local coherence factor, K_D , in each bin is higher than phase-space integrated value. Binning scheme uses LHCb model but K_D and average strong phase taken from CLEO-c/BESIII - Analysis remains model-independent

Simultaneously measure flavor tagged D⁰ decays from inclusive SL modes to provide additional constraints to *D* parameters

12

9fb-1 Measurement of γ using $B^{\pm} \rightarrow D[K\pi\pi\pi]h^{\pm}$ - binned NEW! **Preliminary** Preliminary LHCb $9\,\mathrm{fb}^{-1}$ $9 \, {\rm fb}^{-1}$ $B^- \rightarrow D\pi^-$, Bin 1 $B^- \rightarrow DK^-$, Bin 1 $B^+ \rightarrow D\pi^+$, Bin 1 $B^+ \rightarrow DK^+$, Bin 1 + Data + Data More abundant but $B^{\pm} \rightarrow DK^{\pm}$ $B^{\pm} \rightarrow D^{0}\pi^{\pm}$ $B^{\pm} \rightarrow D^{0}K^{\pm}$ $R^{\pm} \rightarrow D_{\pi}$ $B \rightarrow D\pi^{\pm}X$ $B^0_* \rightarrow DK^*X$ lower interference $B \rightarrow DK^{\pm}$ $B \rightarrow DK^{\pm}X$ $B \rightarrow D\pi^{\pm}X$ Crossfeed $A_b^0 \rightarrow D^0 p^{\pm} \pi$ Combinatorial effects as $r_B^{\pi} \sim 0.005$ Crossfeed Combinatorial compared with r_B^K~0.1 asymmetry LHCb LHCb LHCb LHCb $9 \, \mathrm{fb}^{-1}$ $9 \, \mathrm{fb}^{-1}$ $9\,\mathrm{fb}^{-1}$ $9\,\mathrm{fb}^{-1}$ $B^- \rightarrow DK^-$, Bin 2 $B^+ \rightarrow DK^+$, Bin 2 $B^- \rightarrow D\pi^-$, Bin 2 $B^+ \rightarrow D\pi^+$, Bin 2 \$200 CPV at 10σ - largest CP asymmetry СD observed so far arge LHCb LHCb LHCb LHCb $9 \, {\rm fb}^{-1}$ $9 \, {\rm fb}^{-1}$ $9 \, {\rm fb}^{-1}$ $9 \, {\rm fb}^{-1}$ $B^- \rightarrow DK^-$, Bin 3 $B^+ \rightarrow DK^+$, Bin 3 $B^+ \rightarrow D\pi^+$, Bin 3 $B^- \rightarrow D\pi^-$, Bin 3 820 **Opposite sign** asymmetries - "strong phase" difference of π LHCb LHCb LHCb LHCb $9 \, \mathrm{fb}^{-1}$ $9\,{\rm fb}^{-1}$ $9 \, \text{fb}^{-1}$ $9 \, {\rm fb}^{-1}$ $B^- \rightarrow DK^-$, Bin 4 $B^+ \rightarrow DK^+$, Bin 4 $B^- \rightarrow D\pi^-$. Bin 4 $B^+ \rightarrow D\pi^+$. Bin 4 40 Small coherence factor 20 13 5.4 5.2 5.6 5.8 5.4 56 5.8 $m_{D^0K^-}$ [GeV/ c^2] $m_{D^0K^+}\,[\,{\rm GeV}/c^2]$ 5.2 5.4 5.6 5.8 5.2 5.4 5.6 5.8

Using binned phasespace results with hadronic parameters of the *D* decay constrained from BESIII, CLEO-c and LHCb charm mixing results

$$\begin{split} \delta_B^K &= \left(134.6^{+}_{-} \begin{array}{c} ^{6.0+0.7+}_{-} \begin{array}{c} ^{8.6}_{-} \end{array}\right)^\circ \\ \delta_B^\pi &= \left(311.8^{+14.7+3.0+14.7}_{-15.0-2.3+15.0}\right)^\circ \\ r_B^K &= \left(94.6^{+3.1+0.5+3.0}_{-3.1-0.5+2.3}\right) \times 10^{-3} \\ r_B^\pi &= \left(\begin{array}{c} 4.5^{+1.1+0.3+0.4}_{-1.0-0.3+0.3}\right) \times 10^{-3}, \end{split}$$

 $\gamma = \left(54.8^{+6.0+0.6+6.7}_{-5.8-0.6+4.3}\right)^{\circ}$

Key input to next gamma combination!

Second most precise determination of gamma using any single *D* decay mode - systematic uncertainty order of magnitude smaller than statistical First analysis of this kind!

Beauty and Charm LHCb gamma combination

Measurements of gamma in *B* decays include charm mixing parameters and strong phases of subsequent *D* decays

Rely on inputs from independent measurements

 $\gamma = (65.4^{+3.8}_{-4.2})^{\circ}$

JHEP 12(2021)141

Dedicated CERN seminar

New inputs to γ combination

CP violation in $B^+ \rightarrow K^+ \pi^0$

Family of $B \rightarrow K \pi$ decays proceed via several processes - CPV arises from interference - great probe for new physics contributions

Mode	Quark-level amplitude	
$B^0 \to K^+ \pi^-$	$T + P + P_{EW}^{C}$	2
$B^+ \to K^+ \pi^0$	$T + P + C + P_{EW} + P_{EW}^{C} + A$	
$B^+ \to K^0 \pi^+$	$P + P_{EW}^{C} + A$	
$B^0 \to K^0 \pi^0$	$P + C + P_{EW} + P_{EW}^C$	

Tree and penguin contributions dominate, expect sizable $A_{\rm CP}$ with ~ same magnitude and sign

Almost pure penguin - no sizable A_{CP} expected in SM

arxiv:1101.0675

CP violation in B⁺
$$\rightarrow$$
 K⁺ π^{0}
Within SM amplitudes should obey relations of Isospin symmetry - can predict branching fractions, A_{CP} and
lifetime relations amongst the four $B \rightarrow K \pi$ channels
Full SM Isospin sum rule [PLB627 (2005) 82-88]
 $\left[A_{CP}^{K^{0}\pi^{+}} \frac{B^{K^{0}\pi^{+}}}{B^{K^{+}\pi^{-}}} - A_{CP}^{K^{+}\pi^{0}} \frac{2B^{K^{+}\pi^{0}}}{B^{K^{+}\pi^{-}}}\right] \frac{\tau_{B^{0}}}{\tau_{B^{\pm}}} + \left[A_{CP}^{K^{+}\pi^{-}} - A_{CP}^{K^{0}\pi^{0}} \frac{2B^{K^{0}\pi^{0}}}{B^{K^{+}\pi^{-}}}\right] = 0$
K π puzzle: (long standing *b* anomaly)
Expect
 $A_{CP}^{K^{+}\pi^{-}} \sim A_{CP}^{K^{+}\pi^{0}}$
 $A_{CP}(K_{S}^{0}\pi^{0}) = -0.150 \pm 0.032$
 $A_{CP}(K_{S}^{0}\pi^{0}) = 0.01 \pm 0.10$
(non-zero)

CP violation in $B^+ \rightarrow K^+ \pi^0$

CP violation in $B^+ \rightarrow K^+ \pi^0$

decay at hadron collider

 $B^+ \rightarrow h^+ \pi^0$ poses unique challenges for p-p collision environment

One track + one ECAL cluster \rightarrow First analysis of one track b hadron

No reconstructible displaced vertex - key signature of b hadron decays

 $A_{CP}(B^+ \to K^+ \pi^0) = A_{raw}(B^+ \to K^+ \pi^0) - A_{prod.}^B - A_{det.}^K$

With Run 3 data projected statistical uncertainty 0.005 Proof of concept for B^0 ->K⁰ π^0 - run 3 trigger in place! Combined effect of nuisance asymmetries measured with high statistics B->J/ψK control channel

Run 2

$$A_{CP}(B^+ \to K^+ \pi^0) = 0.025 \pm 0.015 \pm 0.006 \pm 0.003$$

Introduced dedicated trigger for

 K^+

Result is consistent with world average but more precise

 $A_{CP}^{K^+\pi^-} \sim A_{CP}^{K^+\pi^0}$ does not hold at > 8 σ

Using result in sum rule $A_{CP}(B^0 \rightarrow K^0\pi^0) = -0.138 \pm 0.025$ - inconsistent with zero at 5.5σ

Confirms and strengthens $K\pi$ puzzle! 19

 $b \rightarrow c \overline{u} q$ anomaly

Rates of colour allowed non-leptonic decays are not in agreement with SM expectations based on QCDf - tensions pull in the same direction

Experimental inaccuracies?

20

Non-leptonic tree-level decays have been considered insensitive to NP - how does this affect our interpretations of gamma? JHEP07(2020)177

$$b \rightarrow c \ \overline{u} \ q$$
 anomaly - $A_{\rm fs}^s$

In SM $\bar{B}_s \rightarrow D_s^+ \pi^-$ is flavour specific and CP-conserving $C1: A_{\bar{f}} = 0 = \bar{A}_f$ $C2: \bar{A}_{\bar{f}} = A_f$ <u>Standard Model</u> <u>Ge</u>

$$egin{aligned} \mathcal{A}_{\mathrm{fs}}^{s} &= rac{\Gamma\left(ar{B}_{s}(t)
ightarrow f
ight) - \Gamma\left(B_{s}(t)
ightarrow ar{f}
ight)}{\Gamma\left(ar{B}_{s}(t)
ightarrow f
ight) + \Gamma\left(B_{s}(t)
ightarrow ar{f}
ight)} \ &= a_{\mathrm{fs}}^{s} \quad --> \quad ext{CPV in mixing} \ &= a_{\mathrm{sl}}^{s} = (-60\pm280)\cdot10^{-5} \ & ext{Dominated by SL decays} \end{aligned}$$

General BSM model

Challenge C2 with general BSM contribution $\mathcal{A}_{f} = |\mathcal{A}_{f}^{SM}| e^{i\phi^{SM}} e^{i\varphi^{SM}} + |\mathcal{A}_{f}^{BSM}| e^{i\phi^{BSM}} e^{i\varphi^{BSM}}$ $=: |\mathcal{A}_{f}^{SM}| e^{i\phi^{SM}} e^{i\varphi^{SM}} (1 + re^{i\phi} e^{i\varphi}),$ $\phi = \phi^{BSM} - \phi^{SM} \qquad \varphi = \varphi^{BSM} - \varphi^{SM} \qquad r = |\mathcal{A}_{f}^{BSM}| / |\mathcal{A}_{f}^{SM}|$ $\mathcal{A}_{fs}^{s} \approx a_{fs}^{s} - 2r \sin \phi \sin \varphi$ $=a_{fs}^{s} - \mathcal{A}_{dir}^{s}$

New physics effects may modify value of A_{fs}^s in $\bar{B}_s \to D_s^+ \pi^-$ to 10⁻² or above

Neither $A_{\rm fs}^s(D_s^+\pi^-)$ or its friend $A_{\rm fs}^s(D^+K^-)$ has been explicitly measured.

$$b \rightarrow c \overline{u} q$$
 anomaly - A_{fs}^s

Experimentally favourable to measure untagged, time-integrated asymmetry

 \rightarrow Significant gain in statistics as no longer need flavour tagging (tagging efficiency ~6% at LHCb)

a

$$\langle A_{\text{untagged}}^{q} \rangle \approx A_{\text{dir}}^{q} - \frac{a_{\text{fs}}^{q}}{2}(1 - \rho_{q}) \text{ Lose no sensitivity to } A_{\text{dir}} \\ (\rho_{d} \approx 0.63 \text{ and } \rho_{s} \approx 0.001) \\ A_{\text{raw}} = \frac{N(D_{s}^{+}\pi^{-}) - N(D_{s}^{-}\pi^{+})}{N(D_{s}^{+}\pi^{-}) + N(D_{s}^{-}\pi^{+})} \\ \langle A_{\text{raw}}^{s} = \frac{A_{\text{raw}} - A_{\text{det}}}{A_{\text{untagged}}} \\ - A_{\text{prod}} \frac{\int_{t=0}^{\infty} e^{-\Gamma_{s}t} \cos(\Delta M_{s}t)\epsilon(t)dt}{\int_{t=0}^{\infty} e^{-\Gamma_{s}t} \cosh(\Delta f_{s}^{-}t)\epsilon(t)dt}$$
Backgrounds well understood through control samples - not a limiting systematic } \sum_{i} f_{\text{bkg}}^{i} \cdot A_{\text{bkg}}^{i}
Small A_{prod} is diluted by time-integral $\frac{1}{2}$

 $b \rightarrow c \overline{u} q$ anomaly - A_{fs}^{s}

LHCb has best prospects for such a measurement

Run 2 sensitivity of $2x10^{-3}$ Run 3 sensitivity of $6x10^{-4}$

- 15fb⁻¹
- New software trigger enhancing efficiency of hadronic modes in particular

Existing limits on A_{fs}^s from SL decays are consistent with tiny SM value - if $\langle A_{untagged}^s \rangle$ non-zero at 10⁻² level would be clear evidence of NP causing direct CPV independent of any theoretical uncertainties

With much improved precision can consider

$${\sf A}^{s}_{fs}(D^{+}_{s}\pi^{-})-{\sf A}^{s}_{fs}(D^{+}_{s}\ell^{-}ar{
u}_{\ell})={\sf A}^{s}_{dir}(D^{+}_{s}\pi^{-})$$

Any significant non-zero value would be unambiguous signal of NP independent of any theoretical assumptions

Prospects for γ measurements

All **ADS/GLW** observables are statistically limited. Will the systematic uncertainty scale with statistics?

- Increased calibration samples for production and reconstruction asymmetries
- Larger MC samples for efficiencies fast simulation methods
- Background uncertainties that will improve with higher statistics studies

GGSZ golden-mode model-independent analysis gives the most precise single measurement of gamma to date - also statistically limited

- Largest systematic due to external inputs from CLEO-c/BESIII(3fb⁻¹) currently 1 degree
- With 20fb⁻¹ planned from BESIII will reduce to 0.5 degrees arxiv:1912.05983

Can extend methods to $B^0 \rightarrow D[->K_\pi^+\pi^-]K^+\pi^-$ "Double Dalitz" model-independent measurements, $r_{\rm p} \sim 0.25$ - high sensitivity!

Prospects for γ measurements

Sensitivity to π^0 modes will increase

D->K $\pi\pi^0$, D->KK π^0 , D-> $\pi\pi\pi^0$ Branching fractions 3-10x larger than 2-body decays

Reconstruction and selection efficiency of π^0 3% currently

In Upgrade II can fully exploit ADS/GLW and GGSZ modes with additional π^0 due to CALO granularity and energy resolution improvements

B->D[Ks $\pi\pi\pi^{0}$]K will have sensitivities approaching that of golden B->D[Ks $\pi\pi$]K channel

CALO improvements also will drive B->K π^0 and B->K $^0\pi^0$ measurement sensitivity

Prospects for γ measurements

ckmfitter.in2p3.fr, arxiv:1812.07638

Prospects for $b \rightarrow c \overline{u} q$ anomaly

With 300fb⁻¹ LHCb will be able to bring statistical and systematic uncertainties down by almost an order of magnitude.

Normalisation channel is limiting systematic- need improvements on $B^0{\rightarrow} D\pi$ and Bs mode or fs/fd

With 300fb⁻¹ expect uncertainties on A_{sl}^s and A_{fs}^s at 10⁻⁴ * Can study * *All predictions here are my own ;*)

$$A^{s}_{fs}(D^{+}_{s}\pi^{-}) - A^{s}_{fs}(D^{+}_{s}\ell^{-}\bar{\nu}_{\ell}) = A^{s}_{dir}(D^{+}_{s}\pi^{-})$$

Any significant non-zero value would be unambiguous signal of NP independent of any theoretical assumptions

29

Summary

- LHCb continues to perform a uniquely wide range of CP violation studies in non-leptonic B meson decays with Run 1 and Run 2 data
- With upgrades I and II LHCb will be sensitive to new modes
- Extremely exciting prospects for anomalies such as K- π puzzle and b \rightarrow c \overline{u} g anomaly

Global

Tree

Backup - pi0 reconstruction

π^0 Reconstruction

- Neutral pions identified by decay to two photons
- Below $p_T = 3$ GeV photons can be resolved in two separate clusters, at higher energies clusters merge
- Cluster separated into two subclusters centered on highest energy deposits according to expected transverse profile
- Photon separation and invariant mass required to be consistent with π^0
- Merged π^0 :
 - + Higher p_T
 - + Reduced combinatorial
 - Wider mass resolution
- For $B^+ \to K^+ \pi^0$, keep only **merged** π^0 to preserve trigger bandwidth

Taken from Will Parker

2 interleaved subclusters

Single cluster

19

Backup - Beauty and Charm LHCb gamma combination

B decay	D decay	Dataset	Status since Ref. 17
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ h^-$	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	Run 1	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^0$	Run 1	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_{ m S} K^\pm \pi^\mp$	Run 1&2	Updated
$B^{\pm} \rightarrow D^* h^{\pm}$	$D ightarrow h^+ h^-$	Run 1&2	Updated
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^+ h^-$	Run 1&2(*)	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	Run 1&2(*)	As before
$B^{\pm} ightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D ightarrow h^+ h^-$	Run 1	As before
$B^0 \rightarrow DK^{*0}$	$D ightarrow h^+ h^-$	Run 1&2(*)	Updated
$B^0 \rightarrow DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	Run 1&2(*)	New
$B^0 \rightarrow DK^{*0}$	$D \rightarrow K_{ m S}^0 \pi^+ \pi^-$	Run 1	As before
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	Run 1	As before
$B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ \to h^+ h^- \pi^+$	Run 1	As before
$B^0_s \rightarrow D^{\mp}_s K^{\pm} \pi^+ \pi^-$	$D^+_s \rightarrow h^+ h^- \pi^+$	Run 1&2	New

151 observables to determine 52 parameters using GammaCombo package

Backup - Beauty and Charm LHCb gamma combination

D decay	Observable(s)	Dataset	Status since
			Ref. [17]
$D^0 ightarrow h^+ h^-$	ΔA_{CP}	Run 1&2	New
$D^0 ightarrow h^+ h^-$	y_{CP}	Run 1	New
$D^0 ightarrow h^+ h^-$	ΔY	Run 1&2	New
$D^0 \to K^+ \pi^-$ (Single Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	Run 1	New
$D^0 \to K^+ \pi^-$ (Double Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	Run 1&2(*)	New
$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	Run 1	New
$D^0 ightarrow K^0_{ m S} \pi^+ \pi^-$	x, y	Run 1	New
$D^0 ightarrow K_8^0 \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	Run 1	New
$D^0 ightarrow K^0_{ m S} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	Run 2	New

151 observables to determine 52 parameters using GammaCombo package

Backup - Charm mixing parameter $y_{CP} - y_{CP}^{K\pi}$

Result compatible with the present world average and more precise by a factor of four!

$$y_{CP} - y_{CP}^{K\pi} = (6.96 \pm 0.26 \pm 0.13) \times 10^{-3}$$

Result will be added to LHCb Beauty and Charm combination soon!

6fb-1 Arxiv:2202.09106 Ē e 5

Backup - Measurement of gamma in $B^{\pm} \rightarrow D[Kshh]h^{\pm}$

Can construct observables for each bin i

$$N_{+i}^{-} = h_{B^{-}} \left[F_{+i} + \left(\left(x_{-}^{DK} \right)^{2} + \left(y_{-}^{DK} \right)^{2} \right) F_{-i} + 2\sqrt{F_{i}F_{-i}} \left(x_{-}^{DK} \frac{c_{+i}}{c_{+i}} + y_{-}^{DK} \frac{s_{+i}}{s_{+i}} \right) \right]$$

Normalisation absorbs production and detection asymetries Efficiency corrected fraction of events that fall in bin i

Cosine/sine of strong phase difference between D^0 and $\overline{D^0}$ averaged over bin i

Use of $D\pi$ channel controls selections and reconstruction

effects

c_i and s_i inputs taken from combination of BESIII and CLEO results

 F_i normally determined through semileptonic decays (no CPV) however to increase sensitivity B->D π channel is fit simultaneously with B->DK to determine

In fact a slightly different parameterisation is used for fit stability

Negligible contribution to gamma precision for B->D π as $r_B^{DK} \approx 20 \times r_B^{D\pi}$

9fb-1

JHEP 02 (2021) 169

Choice of binning scheme affects only the statistical sensitivity to gamma - model independent measurement ³⁵

Backup - Measurement of gamma in $B^{\pm} \rightarrow D[Ks0hh]h^{\pm}$

D decay has rich resonance structure - increases sensitivity

Simultaneous fit to mass distributions in 16 categories

- B->DK and B->Dπ
- B charge
- D->KK, D->ππ
- Ks reconstruction

9fb-1

Backup - CP observables in $B^{\pm} \rightarrow D^{(*)}h^{\pm}$ decays

Profile likelihood contours dominated by B^{\pm} -> DK^{\pm} - good agreement with previous LHCb and B factory results

Constructed using charm parameters taken as external constraints from HFLAV average

However $B^{\pm} \rightarrow D^{(*)}h^{\pm}$ provide significant sensitivity to these parameters \rightarrow motivates combination of gamma and charm results

