A puzzle in
$$\overline{B}^0 \to D^{(*)+}K^-$$
 and $\overline{B}^0_s \to D^{(*)+}_s \pi^-$ decays

Nico Gubernari

Based on arXiv:2007.10338 in collaboration with M. Bordone, T. Huber, M. Jung, D. van Dyk

Status and prospects of non-leptonic B Decays Siegen 31-May-2022

Introduction

Non-leptonic $b \rightarrow c$ decays

two kinds of non-leptonic B_0 decays mediated by $b \rightarrow c$ transitions

color-allowed topology

QCD factorization applicable no suppression

color-suppressed topology

QCD factorization **not** applicable power-suppressed

The simplest non-leptonic $B_{(s)}$ decays

decays with four different flavors are the simplest and cleanest non-leptonic $B_{(s)}$ \downarrow no penguin or annihilation contributions

focus on $\overline{B}_{s}^{0} \rightarrow D_{s}^{(*)+}\pi^{-}$ and $\overline{B}^{0} \rightarrow D^{(*)+}K^{-}$ to test QCD factorization [Bordone/NG/Huber/Jung/van Dyk '20]

other color allowed decays discussed not discussed here

Theoretical framework

Effective Lagrangian

effective Lagrangian for $\bar{B}^0_s \to D^{(*)+}_s \pi^-$ and $\bar{B}^0 \to D^{(*)+} K^-$ decays

$$\mathcal{L} = -\frac{4G_F}{\sqrt{2}} V_{cb} V_{uq}^* \left(C_1 O_1^q + C_1 O_1^q \right) + \text{h.c.}$$

effective operators

$$O_2^{q_2} = (\bar{c}\gamma^{\mu}P_LT^Ab)(\bar{q}\gamma_{\mu}P_LT^Au)$$
$$O_1^q = (\bar{c}\gamma^{\mu}P_Lb)(\bar{q}\gamma_{\mu}P_Lu)$$

Wilson coefficients q -flavour universal in the SM

BSM effects may not q -flavour universal

QCD factorization

QCD factorization: systematic method to compute amplitudes in non-leptonic *B* decays in heavyquark limit (leading power in $\frac{\Lambda_{QCD}}{m_b}$) [Beneke/Buchalla(/Neubert/Sachrajda) '99('00)]

$$\mathcal{A}(\bar{B}^0 \to D^+ K^-) \propto f_K F_0^{B \to D}(M_K^2) a_1(D^+ K^-) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)$$

improve theoretical predictions for $\bar{B}_s^0 \to D_s^{(*)+}\pi^-$ and $\bar{B}^0 \to D^{(*)+}K^-$ branching fractions

- Wilson coefficients a_1 computed at NNLO [Huber/Kränkl/Li '16]
- update $B \rightarrow D^{(*)}$ and $B_s \rightarrow D_s^{(*)}$ form factors [Bordone/NG/Jung/van Dyk '19]
- estimate $\frac{\Lambda_{QCD}}{m_b}$ corrections for the first time [Bordone/NG/Huber/Jung/van Dyk '20]

NNLO calculation of a_1

(Contraction of the second se

two-loop corrections to the leading-power hard-scattering kernels [Huber/Kränkl/Li '16]

0000

increase the amplitude $\sim 2\%$ (\Rightarrow increase tension with data)

 $|a_1(D_s^+\pi^-)| = 1.073^{+0.012}_{-0.014}$ $|a_1(D^+K^-)| = 1.070^{+0.010}_{-0.013}$ $|a_1(D_s^{*+}\pi^-)| = 1.071^{+0.013}_{-0.014}$ $|a_1(D^{*+}K^-)| = 1.069^{+0.010}_{-0.013}$

Contraction of the second seco

Form factors in HQE

expand $B \rightarrow D^{(*)}$ FFs in the limit $m_{b,c} \rightarrow \infty$

$$F^{B \to D^{(*)}}(q^2) = c_0 \xi(q^2) + c_1 \frac{\alpha_s}{\pi} C_i(q^2) + c_2 \frac{1}{m_b} L_i(q^2) + c_3 \frac{1}{m_c} L_i(q^2) + c_4 \frac{1}{m_c^2} l_i(q^2)$$

$$F^{B_s \to D_s^{(*)}}(q^2) = c_0 \xi^s(q^2) + c_1 \frac{\alpha_s}{\pi} C_i(q^2) + c_2 \frac{1}{m_b} L_i^s(q^2) + c_3 \frac{1}{m_c} L_i^s(q^2) + c_4 \frac{1}{m_c^2} l_i(q^2)$$

include $1/m_c^2$ corrections [Bordone/Jung/van Dyk '19] all $B \rightarrow D^{(*)}$ and $B_s \rightarrow D_s^{(*)}$ FFs parametrized in terms of 14 Isgur-Wise functions

Form factors predictions

fit Isgur-Wise functions using

- lattice QCD (only A_1 at zero recoil)
- LCSRs for the FFs
- SVZ sum rules for Isgur-Wise functions
- dispersive bounds
- with and w/o exp data

results for all $B \rightarrow D^{(*)}$ and $B_s \rightarrow D_s^{(*)}$ FFs in the whole physical phase space

[Bordone/NG/Jung/van Dyk '19]

Power corrections

- 1. no annihilation or penguin topologies no chirally enhanced hard-scattering contributions $\bar{B}_s^0 \to D_s^{(*)+}\pi^-$ and $\bar{B}^0 \to D^{(*)+}K^-$
- 2. no $\frac{\Lambda_{\text{QCD}}}{m_c}$ corrections since we use QCD form factors instead of soft form factors
- 3. no hard-collinear gluon between b or c quarks and the light meson at order $\frac{\Lambda_{\rm QCD}}{m_b}$
- 4. soft-gluon exchange between the $\overline{B}_{(s)}^{0}D_{(s)}^{(*)+}$ system and the light meson *L* we **estimate it with light-cone sum rules** (LCSRs)

Light-cone sum rules in a nutshell

light-cone sum rules (LCSR)s are a method to calculate hadronic matrix elements

sum rule

$$\langle D_q(k) | \mathcal{O} | \bar{B}_q^0(p) \rangle = \frac{f_B}{f_D} I(q^2) \otimes \langle 0 | \bar{q}(x) \dots h_v(0) | B(v) \rangle$$

factorize hard and soft contributions

- compute hard-scattering kernel $I(q^2)$ using perturbative QCD at leading order in α_s
- non-local *B*-to-vacuum matrix elements are a necessary non-perturbative inputs

method already applied in Khodjamirian et al 2006, 2008 and 2010 for local matrix elements in $B \rightarrow \pi, \rho, K^{(*)}, D^{(*)}$ nonlocal matrix elements in $B \rightarrow K^{(*)}$

we apply this method for the first time to estimate $\mathcal{A}\left(\overline{B}_{q}^{0} \rightarrow D_{q}^{(*)+}L^{-}\right)\Big|_{\mathrm{NLP}}$

Light-cone distribution amplitudes

express *B*-to-vacuum matrix elements in terms of *B*-meson light-cone distribution amplitudes (LCDAs) no two-particle contribution three-particle contribution:

$$\left\{ 0 \left| \bar{d}(x) G_{\alpha\beta}(uy) h_{\nu}(0) \right| B(\nu) \right\}$$

$$= \frac{f_B m_B}{4} \operatorname{Tr} \left\{ \gamma_5 P_+ \left[\left(v_{\alpha} \gamma_{\beta} - v_{\beta} \gamma_{\alpha} \right) (\Psi_A - \Psi_V) - i \sigma_{\alpha\beta} \Psi_V - \left(y_{\alpha} v_{\beta} - y_{\beta} v_{\alpha} \right) \frac{X_A}{\nu \cdot y} + \left(y_{\alpha} \gamma_{\beta} - y_{\beta} \gamma_{\alpha} \right) \frac{W + Y_A}{\nu \cdot y} \right] \right\}$$

$$- i \epsilon_{\alpha\beta\sigma\rho} y^{\sigma} v^{\rho} \gamma_5 \frac{\tilde{X}_A}{\nu \cdot y} + i \epsilon_{\alpha\beta\sigma\rho} y^{\sigma} \gamma^{\rho} \gamma_5 \frac{\tilde{Y}_A}{\nu \cdot y} - \left(y_{\alpha} v_{\beta} - y_{\beta} v_{\alpha} \right) y_{\sigma} \gamma^{\sigma} \frac{W}{(\nu \cdot y)^2} + \left(y_{\alpha} \gamma_{\beta} - y_{\beta} \gamma_{\alpha} \right) y_{\sigma} \gamma^{\sigma} \frac{Z}{(\nu \cdot y)^2} \right]$$

new models and higher twist LCDAs triggered our revisiting of the sum rules [Braun/Ji/Manashov '17] organize LCDAs in a **twist expansion** (**twist = dimension – spin**) higher twists are power of Λ_{had}/m_B suppressed

Light-cone sum rules results

our conservative estimates $L = \{\pi, K\}$

$$\frac{\mathcal{A}(\bar{B}_q^0 \to D_q^+ L^-)\big|_{\mathrm{NLP}}}{\mathcal{A}(\bar{B}_q^0 \to D_q^+ L^-)\big|_{\mathrm{LP}}} \simeq [0.06, 0.6]\%$$
$$\frac{\mathcal{A}(\bar{B}_q^0 \to D_q^{*+} L^-)\big|_{\mathrm{NLP}}}{\mathcal{A}(\bar{B}_q^0 \to D_q^{*+} L^-)\big|_{\mathrm{LP}}} \simeq [0.04, 0.4]\%$$

lower value correspond to our central value

upper value obtained by simply multiplying the central value by a factor of 10

update w.i.p. (see Rusov's talk)

rescattering contribution is negligible (see Iguro's talk)

support the fact that $\bar{B}_q^0 \rightarrow D_q^{(*)+}L^-$ decays are theoretically clean

Numerical results and comparison with data

Theory prediction and comparison with data

_					-					
	quantity u	nit	this work	ref. [2] (2016)	-					
	$F_0^{\bar{B}\to D}(M_K^2) $		0.672 ± 0.011	0.670 ± 0.031				_ imn	roved EEs uncertainties	
	$F_0^{\bar{B}_s^0 \to D_s}(M_\pi^2) \qquad -$		0.673 ± 0.011	0.700 ± 0.100					roved in 5 direct dirities	
	$A_0^{\bar{B}\to D^*}(M_K^2)$		0.708 ± 0.038	0.654 ± 0.068						
	$A_0^{\bar{B}_s^0 \to D_s^*}(M_\pi^2)$.		0.689 ± 0.064	0.520 ± 0.060						
	$\left a_1(D_s^+\pi^-)\right $		$1.0727^{+0.0125}_{-0.0140}$	$1.073_{-0.014}^{+0.012}$	-			sam	e results for the WC of	
	$\left a_1(D^+K^-)\right = -$		$1.0702^{+0.0101}_{-0.0128}$	$1.070^{+0.010}_{-0.013}$	-)E as in Huber/Kränkl/Li	
	$\left a_1(D_s^{*+}\pi^-)\right $		$1.0713^{+0.0128}_{-0.0137}$	$1.071^{+0.013}_{-0.014}$				QCL		
_	$\left a_1(D^{*+}K^-)\right $		$1.0687^{+0.0103}_{-0.0125}$	$1.069^{+0.010}_{-0.013}$						
	$ V_{cb} $ 10	$)^{-3}$	41.1 ± 0.5	39.5 ± 0.8						
	$ V_{ud} f_{\pi}$ N	IeV	127.13 ± 0.13	126.8 ± 1.4	-			🗕 upd	ated remaining inputs	
_	$ V_{us} f_K$ N	IeV	35.09 ± 0.06	35.06 ± 0.15				I	5 1	
	source		PDG	QCDF predic	ction					
	$\overline{\mathcal{B}(\bar{B}^0_s \to D^+_s \pi^-)}$		3.00 ± 0.23	4.42 ± 0.2	21)15	$\rightarrow 4\sigma$			discrenancy between	
	$\mathcal{B}(\bar{B}^0 \to D^+ K^-)$	0	$.186 \pm 0.020$	0.326 ± 0.0		$\rightarrow 5\sigma$		measurements and theoretical predictions		
	$\mathcal{B}(\bar{B}^0_s \to D^{*+}_s \pi^-)$		2.0 ± 0.5	$4.3^{+0.9}_{-0.8}$		$\rightarrow 2\sigma$				
	$\mathcal{B}(\bar{B}^0 \to D^{*+}K^-)$) 0	$.212 \pm 0.015$	$0.327\substack{+0.03\\-0.03}$	9	$\rightarrow 3\sigma$				
				0.00						

New Belle results 1/3

Update of the measurements of $\overline{B}{}^0 \rightarrow D^+\pi^$ and $\overline{B}{}^0 \rightarrow D^+K^-$ [Belle '21]

clean from the experimental point of view

 $\mathcal{B}(\bar{B}^0 \to D^+ K^-) = (2.03 \pm 0.05 \pm 0.07 \pm 0.03) \times 10^{-4}$

increase tension with theory predictions to $\sim 7\sigma$

ratio $\mathcal{B}(\bar{B}^0 \to D^+ K^-) / \mathcal{B}(\bar{B}^0 \to D^+ \pi^-)$ compatible with theory predictions

corroborate our findings: theory predictions are systematically larger than measurements

New Belle results 2/3

New Belle results 3/3

Conclusion

Possible explanations

- 1. large nonfactorizable contributions of O(15 20%) in the amplitude \rightarrow excluded by our estimate at 4.4σ level
- 2. experimental issue → would imply problems in several (consistent) measurements (CLEO, BaBar, LHCb, Belle)
- 3. shift in the **inputs** (e.g. V_{ud} , V_{us} , V_{cb}) \rightarrow would probably violate CKM unitarity
- 4. BSM physics only explanation left \rightarrow see next slide
- 5. a combination of the effects discussed above

Is NP a viable option?

implies O(20%) tree-level corrections in $b \rightarrow cu(d/s)$ transitions not observed so far

possibility explored in several works \Rightarrow BSM physics viable option (W' models...)

BSM explanation consistent with flavor observables [Iguro/Kithahara '21] [Cai et al. '21] [Fleischer et al. '20] however strong constraints from dijet searches

[Bordone/Greljo/Marzocca/Fuentes-Martin '21]

