Overview of PQCD for non-leptonic decays

Hsiang-nan Li Academia Sinica Presented for Siegen U, Jun. 01, 2022

Outlines

- Framework kT factorization Power counting TMD wave functions Recent progress **Global analysis** Multi-body decays Heavy baryon decays
- Summary

Framework

kT factorization Power counting TMD wave functions

Goal of factorization

•Factorize hadronic matrix element for B decay into hard kernel H and universal hadron wave function Φ to have predictive power

kT factorization

- Hadron momentum $P_1 = (P_1^+, 0, \mathbf{0}_T)$
- Parton momentum k with small k^2 has four components $k = (k^+, k^-, k_T)$ $\sum_{2k^+k^- - k_T^2}$
- Convolution $\int d^4k \Phi(k^+, k^-, k_T) H(k^+, k^-, k_T)$
- Drop smallest k^- in H, integrate Φ over k^-
- Arrive at kT factorization

$$\int dk^+ d^2 k_T \Phi(k^+, k_T) H(k^+, 0, k_T)$$

transverse-momentum-dependent (TMD)
• $k^2 = -k_T^2$ in H, off-shell parton

Collinear factorization

- Can further drop smaller k_T , if no endpoint singularity $k^{+} \sim 0$
- Integrate Φ over k_T to get LCDA ϕ
- Arrive at collinear factorization $\int dk^+ \phi(k^+) H(k^+, 0, 0) \overset{}{\longleftarrow} \overset{k^2}{\underset{\text{on-shell parton}}{k^2 = 0}} h^2 = 0$

- If singularity appears, stay at kT factorization
- Endpoint singularity appears in B decays (factorizable emission and annihilation)
- Collinear → QCDF → FF inputs, cutoffs Beneke's talk

Power counting

- k_T is integration variable in kT factorization
- No fixed power counting for parton virtuality

multiple scales in B decays

Resummations

- kT resummation for Φ and threshold resummation for H
- kT resumption organizes dynamics down to $\sqrt{Q\Lambda}$ into Sudakov factor S $1/b \sim \Lambda$ intrinsic k_T
- Factorization $\Phi(x, Q, b) = S(Q, b)\phi(x, b)$ dependence impact parameter suppress large b (small kT)
- Threshold gives jet function J, H -> J(x)*H,
 Zhang, Li 2020
 Suppress small x region

Smearing of endpoint singularity

- Parton k_T accumulated through Sudakov gluon emissions up to $\sqrt{Q\Lambda}$
- Similar to DGLAP evolution

 Subleading contributions under control, so smearing is effective

Gauge invariance

- Both QCD diagrams G and Φ depend on gauges, due to off-shell partons
- IR finite H can be extracted from quark process or hadron process
- $H=G/\Phi$ is gauge invariant
- related to exact cancellation of IR logs
- Proved using covariant gauge Nandi, Li 2007

Light-cone singularity

- Compute $H^{(1)} = G^{(1)} \phi^{(1)} \otimes H^{(0)}$
- $1/(n_- \cdot l) = 1/l^+$ from Wilson lines in $\phi^{(1)}$ (vertex correction) gives light-cone singularity
- They cancel in collinear factorization $\phi^{(1)} \otimes H = \int \frac{dl^+}{l^+} [H(x) - H(x + l^+/P^+)]$
- Difference of $H^{(0)}$ removes singularity $l^+ \rightarrow 0$
- They exist in k_T factorization: $\int \frac{dl^+}{l^+} [H(x,k_T) - H(x+l^+/P^+,k_T+l_T)]$
- because $H(x,k_T) \neq H(x,k_T+l_T)$

Soft subtraction

 $n_{-} \rightarrow n, n^2 \neq 0$ introduces self-energy correction to Wilson lines

 $1/(n \cdot l)^2$

generates power divergence or pinched singularity

Non-dipolar Wilson lines

Wang, Li 2014

- Using dipolar Wilson lines, Collins' soft subtraction is the unique solution
- Choose orthogonal gauge vectors for off-light-cone Wilson lines
- Pinched singularity disappears
- soft subtraction is not needed

Recent progress

Global analysis Multi-body decays Heavy baryon decays

Global analysis

Hua et al. 2021

 Consistent formalism with only universal inputs allows global analyses in PQCD

$$\phi_P(x) = \frac{f_P}{2\sqrt{2N_c}} 6x(1-x) \left[1 + a_1^f C_1^{3/2} (1-2x) + a_2^f C_2^{3/2} (1-2x) + a_4^f C_4^{3/2} (1-2x) \right]$$

Gegenbauer coefficients from LO global fit

	a_1^{π}	a_2^{π}	a_4^{π}	a_{P2}^{π}	a_{T2}^{π}	$a_1^{\rho \parallel}$	$a_2^{\rho\parallel}$	
fit	_	0.644 ± 0.075	-0.41 ± 0.098	1.08 ± 0.15	-0.48 ± 0.33	0	0.16 ± 0.084	
	a_1^K	a_2^K	a_4^K	a_{P2}^K	a_{T2}^K	$a_1^{K^*\parallel}$	$a_2^{K^*\parallel}$	γ
fit	0.331 ± 0.082	0.28 ± 0.10	-0.398 ± 0.073	_	_	_	0.137 ± 0.029	$(75.2 \pm 2.9)^{\circ}$

Compared with sum rule results

	a_1^{π}	a_2^{π}	a_4^{π}	$a_1^{\rho \parallel}$	$a_2^{\rho \parallel}$
QCD sum rule	—	0.25 ± 0.15	-0.015 ± 0.025	_	0.15 ± 0.07
	a_1^K	a_2^K	a_4^K	$a_1^{K^*\parallel}$	$a_2^{K^*\parallel}$
QCD sum rule	0.06 ± 0.03	0.25 ± 0.15	_	0.03 ± 0.02	0.11 ± 0.09

channal	data		fit		
channer	branching ratio (10^{-6})	$A_{CP}(\%)$	branching ratio (10^{-6})	$A_{CP}(\%)$	
$B^0 \to \bar{K}^0 K^0$	1.21 ± 0.16	-60 ± 70	1.23 ± 0.08	0 ± 0	
$B^0 \to \bar{K}^0 \pi^0$	9.90 ± 0.50	0 ± 13	8.98 ± 0.19	-4.02 ± 0.48	
$B^0 \to K^- \pi^+$	19.6 ± 0.50	-8.3 ± 0.6	20.3 ± 0.36	-8.34 ± 0.36	
$B^0 \to \pi^- \pi^+$	5.12 ± 0.19	32 ± 4	5.24 ± 0.17	23.2 ± 2.1	
$B^0 \to \rho^0 \bar{K}^0$	3.40 ± 1.10	4 ± 20	3.06 ± 0.37	2.853 ± 0.068	
$B^0 \to \pi^0 \bar{K}^{*0}$	3.30 ± 0.60	-15 ± 13	1.73 ± 0.10	-6.02 ± 0.6	
$B^0 \to \pi^- \rho^+ / \pi^+ \rho^-$	23.0 ± 2.30	$13\pm6/-8\pm8$	23.33 ± 0.8	$-24.3 \pm 1/8.1 \pm 1.1$	
$B^- \to K^0 K^-$	1.31 ± 0.17	4 ± 14	1.47 ± 0.09	22.5 ± 2.7	
$B^- \to \pi^0 K^-$	12.9 ± 0.50	3.7 ± 2.1	12.99 ± 0.23	-6.44 ± 0.6	
$B^- \to \bar{K}^0 \pi^-$	23.7 ± 0.80	-1.7 ± 1.6	23.15 ± 0.42	-2.84 ± 0.24	
$B^- \to \rho^- \pi^0$	10.9 ± 1.40	2 ± 11	8.73 ± 0.25	24.2 ± 2.3	
$B^- \to \pi^0 K^{*-}$	6.80 ± 0.90	-39 ± 21	3.51 ± 0.19	-33.5 ± 1.7	
$B^- \to K^- K^{*0}$	0.59 ± 0.08	12 ± 10	0.476 ± 0.022	22.5 ± 1.3	
$B_s \to K^- K^+$	26.6 ± 2.20	-14 ± 11	24.8 ± 1.50	-8.1 ± 2.3	
$B_s \to \pi^- \pi^+$	0.7 ± 0.1	<i>↑</i> −	0.798 ± 0.092	-1.62 ± 0.39	
$B_s \to K^0 \bar{K}^0$	20.0 ± 6.00	0 ± 0	26.2 ± 1.60	0 ± 0	
$B_s \to \pi^- K^+$	5.80 ± 0.70	22.1 ± 1.5	5.69 ± 0.64	22.1 ± 1.2	
$B_s \to K^+ K^{*-} / K^- K^{*+}$	19.0 ± 5.0		15.28 ± 0.90	$-33.8 \pm 1.3/53.5 \pm 2.4$	
$B_s \to K^0 \bar{K}^{*0} / \bar{K}^0 K^{*0}$	20.0 ± 6.00		15.06 ± 0.96	0 ± 0	

large errors, weak constraint

modes with puzzles not included

Three-body B decays Virto, Magalhaes's talks

• LHCb has measured CP asymmetries in whole Dalitz plot for $B^- \to \pi^+ \pi^- \pi^-$

Two-hadron DA (TDA)

- Study CPV in localized boundary regions of Dalitz plot in three-body B decays
- Two-hadron DA collects collinear divergence appearing as two hadrons collimate roughly

Advantages of PQCD with TDA

- Calculation load reduced to that for 2-body, order 10 diagrams, not order 100
- Can calculate current-induced, transition, annihilation, nonfactorizable contributions
- Form factors can include both resonant and non-resonant contributions, and interference among final states ← time-like FF data

 Can calculate short-distance strong phases, so can predict direct CPV in localized regions

Regional CPV

• Factorization formula for decay amplitude

 $\mathcal{M} = \Phi_B \otimes H \otimes \Phi_{h_1 h_2} \otimes \Phi_{h_3}$

- B meson and hadron DAs have been widely adopted in analysis of 2-body decay
- Calculate B+ and B- decays

 $A_{CP}^{reg}(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}) = 0.52_{-0.22}^{+0.12}(\omega_{B})_{-0.09}^{+0.11}(a_{2}^{\pi})_{-0.03}^{+0.03}(m_{0}^{\pi})$

Wang et al, 2014 +-0.05 +-0.15 +-0.1

- Data $A_{CP}^{\text{region}}(\pi^+\pi^-\pi^-) = 0.584 \pm 0.082 \pm 0.027 \pm 0.007$ for $m_{\pi^+\pi^-\text{high}}^2 > 15 \text{ GeV}^2$ and $m_{\pi^+\pi^-\text{low}}^2 < 0.4 \text{ GeV}^2$
- Long-, short-distance phases equally important

Global analysis

Y. Li et al. 2021

different from V DA

Geg	genbauer coeffici	ents	different from V DA		
	$a^0_{2 ho}$	$a^s_{2 ho}$	$a^t_{2 ho}$	$a^0_{2\phi}$	
fit	0.08 ± 0.13	-0.23 ± 0.24	-0.35 ± 0.06	-0.31 ± 0.19	
	$a_{1K^*}^0$ (Scenario I)	$a_{2K^*}^0$ (Scenario I)	$a_{1K^*}^0$ (Scenario II)	$a_{2K^*}^0$ (Scenario II)	$a_{4K^*}^0$ (Scenario II)
fit	0.31 ± 0.16	1.19 ± 0.10	0.57 ± 0.20	1.13 ± 0.32	-0.85 ± 0.16

Modes		B DA <u>Results</u> Gegenba	auer Data
$B^+ \to K^+(\rho^0 \to)\pi\pi$	$\mathcal{B}(10^{-6})$	$2.91_{-0.60-0.68-0.82}^{+0.68+0.77+1.43}$	3.7 ± 0.5 †
	$\mathcal{A}_{CP}(\%)$	$53.5^{+0.4+4.5+11.9}_{-1.4-4.3-15.0}$ scale	$37 \pm 10^{+1}$
$B^0 \to K^+(\rho^- \to)\pi\pi$	$\mathcal{B}(10^{-6})$	$8.48^{+2.20+1.63+3.87}_{-1.95-1.48-2.51}$	7.0 ± 0.9 †
	$\mathcal{A}_{CP}(\%)$	$33.0^{+1.1+5.2+8.9}_{-1.5-4.9-12.1}$	20 ± 11
$B_s^0 \to K^-(\rho^+ \to)\pi\pi$	$\mathcal{B}(10^{-6})$	$16.41_{-5.30-0.15-1.31}^{+7.59+0.16+1.10}$	_
	$\mathcal{A}_{CP}(\%)$	$19.4^{+3.6+3.3+3.1}_{-3.2-3.3-2.9}$	_
$B^+ \to K^0(\rho^+ \to)\pi\pi$	$\mathcal{B}(10^{-6})$	$7.86^{+2.07+1.51+3.68}_{-1.82-1.50-2.31}$	$7.3^{+1.0}_{-1.2}$ [†]
	$\mathcal{A}_{CP}(\%)$	$13.1^{+1.2+1.8+1.5}_{-0.5-2.5-3.6}$	-3 ± 15
$B^0 \to K^0(\rho^0 \to)\pi\pi$	$B(10^{-6})$	$3.76^{+0.95+0.57+0.92}_{-0.81-0.52-0.81}$	3.4 ± 1.1
	$\mathcal{A}_{CP}(\%)$	$1.4^{+0.6+0.5+2.1}_{-0.5-0.6-3.1}$	-4 ± 20
$B_s^0 \to \bar{K}^0(\rho^0 \to)\pi\pi$	$\mathcal{B}(10^{-6})$	$0.17^{+0.04+0.02+0.01}_{-0.04-0.02-0.02}$	
from our global fit	$\mathcal{A}_{CP}(\%)$	$-51.0^{+1.1+11.7+26.6}_{-0.6-10.6-13.4}$	

Four-body decays Rui, Y. Li, Li, 2021

• Analyze angular distribution in four-body

 In addition to CPV, can predict triple product asymmetries (also need to know strong phase)

$$A_T^1 = \frac{\Gamma((2\zeta_1 - 1)(2\zeta_2 - 1)\sin\phi > 0) - \Gamma((2\zeta_1 - 1)(2\zeta_2 - 1)\sin\phi < 0)}{\Gamma((2\zeta_1 - 1)(2\zeta_2 - 1)\sin\phi > 0) + \Gamma((2\zeta_1 - 1)(2\zeta_2 - 1)\sin\phi < 0)}$$

Asymmetries	$B_s^0 \to (K^+\pi^-)(K^-\pi^+)$	$B^0_s \to (K^0 \pi^+) (\bar{K}^0 \pi^-)$	$B^0 \to (K^-\pi^+)(K^+\pi^-)$	$B^0 \to (K^0 \pi^+) (\bar{K}^0 \pi^-)$	$B^+ \rightarrow (K^0\pi^+)(K^+\pi^-)$
A_T^1	$11.8^{+0.8}_{-1.1}$	$9.7^{+0.5}_{-0.6}$	$10.6^{+1.3}_{-1.7}$	~ 0	$8.5\substack{+0.9 \\ -0.3}$

Heavy baryon decays Han et al, 2022

• Revisited transition form factors

LCDAs up to twist 4

leading twist Das give small contribution

Numerical results

f1(0)	twist-3	twist-4	twist-5	twist-6	total
exponent twist-2 twist-3+ twist-3- twist-4 total	ial 0.0007 0.0001 + -0.0002 0.01 0.01	-0.00007 0.002 0.0060 0.00009 0.008	$\begin{array}{r} -0.0005 \\ 0.0004 \\ 0.000004 \\ 0.25 \\ 0.25 \end{array}$	-0.000003 -0.000004 0.00007 0.000007 0.00007	$\begin{array}{c} 0.0001 \\ 0.002 \\ 0.006 \\ 0.26 \\ 0.27 \pm 0.09 \pm 0.07 \end{array}$
= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	NRQM heavy-LCS light-LCSR light-LCSR QCD-light-L0 IQET-light-L 3-point QS lattice [AS PQCD his work (exp his work (fre	$\begin{bmatrix} 76 \\ R & [50] & 0 \\ -\mathcal{A} & [77] \\ -\mathcal{P} & [77] \\ CSR & [78] \\ CSR & [78] \\ ACSR & [78] \\ R & [49] \\ 47] & 0 \\ [32] & 2.2 \\ 0 \\ 0 \\ 0 \\ e \\ parton) & 0 \end{bmatrix}$	$f_{1}(0)$ 0.043 0.023 ^{+0.006} 0.023 ^{-0.005} 0.14 ^{+0.03} 0.12 ^{+0.03} 0.12 ^{+0.03} 0.12 ^{-0.04} 0.018 -0.002 0.22 0.22 \pm 0.08 2 ^{+0.8} 2 ^{-0.5} × 10 ⁻³ 0.27 \pm 0.12 0.24 \pm 0.10	consistent v approaches ready to stu exclusive h decays and systematica ← previous lead	with other s, data indication udy various eavy baryon I CPV ally in PQCD ling-twist result

Summary

- Endpoint singularity in collinear factorization for B decays demands kT factorization
- No fixed power counting for kT
- Both TMD and H contain multiple scales; require kT and threshold resummatons
- Subleading contributions under control
- Prominent successes in phenomenology
- Global analyses of B decay data allowed
- Extended to multi-body decays with TDA