Workshop on "Status and prospects of Non-leptonic B meson decays" @ Siegen (online), 2022.06.01

Topological diagrammatic approach and its unification with SU(3) irreducible representations

> **Fu-Sheng Yu** Lanzhou University

Theoretical methods for non-leptonic weak decays

Theoretical approaches	Advantages	Disadvantages	
QCDF, PQCD, SCET	(Almost) first-principle for dynamics, very predictive for B decays	Difficult for power corrections and non-perturbative contributions	
Final-state interaction	Dynamics for non-perturbations	Suffer very large theoretical uncertainties	
SU(3) irreducible representations	Based on approximate flavor symmetry, no additional assumptions	No link to dynamics	
Topological diagrams	Include non-perturbations, successful for charm phenomenologies	Mathematical foundation is not clear	

FSI = QCD = Topological diagrams = SU(3) irreducible representations ???

Topological diagrams = Irreducible representations

- The Equivalence was firstly pointed out by [X.G.He, W.Wang, 2018]
- The invariant tensors are the bridge between the two approaches.
- One topological diagram is found independent.

Topological Diagrams

- Decaying amplitudes are classified according to the weak flavour flows
- All the strong interaction effects are included. Therefore, non-perturbative contributions are all considered.
- Amplitudes extracted from data

Chau,'86; Chau, Cheng,'87, '89; Chiang, Gronau, Rosner, Suprun '04; Cheng, Chiang,'10; And many many other references

- Always in the flavour **SU(3)** symmetry limit
- W-annihilation diagrams are important for CP violation of B decays

SU(3) irreducible representation approach

- Zeppendfeld, 1981
 First SU(3) relations for B decays
 with reduced amplitudes
- Savage and Wise, 1989
 First tensor contraction formulae
 SU(3) irreducible representation

$b(c) \to q_1 \bar{q}_2 q_3, \ q_i = u, d, s$

 $\begin{aligned} \mathcal{A}_{t}^{\text{IRA}} &= A_{3}^{T} B_{i} (H_{\bar{3}})^{i} (M)_{k}^{j} (M)_{j}^{k} + C_{3}^{T} B_{i} (M)_{j}^{i} (M)_{k}^{j} (H_{\bar{3}})^{k} + B_{3}^{T} B_{i} (H_{3})^{i} (M)_{k}^{k} (M)_{j}^{j} + D_{3}^{T} B_{i} (M)_{j}^{i} (H_{\bar{3}})^{j} (M)_{k}^{k} \\ &+ A_{6}^{T} B_{i} (H_{6})_{k}^{ij} (M)_{j}^{l} (M)_{l}^{k} + C_{6}^{T} B_{i} (M)_{j}^{i} (H_{6})_{k}^{jl} (M)_{l}^{k} + B_{6}^{T} B_{i} (H_{6})_{k}^{ij} (M)_{j}^{k} (M)_{l}^{l} \\ &+ A_{15}^{T} B_{i} (H_{\overline{15}})_{k}^{ij} (M)_{j}^{l} (M)_{l}^{k} + C_{15}^{T} B_{i} (M)_{j}^{i} (H_{\overline{15}})_{l}^{jk} (M)_{k}^{l} + B_{15}^{T} B_{i} (H_{\overline{15}})_{k}^{ij} (M)_{j}^{k} (M)_{l}^{l}. \end{aligned}$

Widely applications

$$3\otimes\overline{3}\otimes3=3_p\oplus3_t\oplus\overline{6}\oplus15$$

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left[\sum_{q=d,s} V_{cq_1}^* V_{uq_2} \left(\sum_{q=1}^2 C_i(\mu) O_i(\mu) \right) - V_{cb}^* V_{ub} \left(\sum_{i=3}^6 C_i(\mu) O_i(\mu) + C_{8g}(\mu) O_{8g}(\mu) \right) \right]$$

 $\mathcal{H}=\mathcal{H}_{a}^{\prime}$

$$(P)_{j}^{i} = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta_{8} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta_{8} & K^{0} \\ K^{-} & \overline{K}^{0} & -\sqrt{2/3}\eta_{8} \end{pmatrix} + \frac{1}{\sqrt{3}} \begin{pmatrix} \eta_{1} & 0 & 0 \\ 0 & \eta_{1} & 0 \\ 0 & 0 & \eta_{1} \end{pmatrix}$$

Everything is tensor

$$_{ij}^k(ar{q}^iq_k)(ar{q}^jc)$$

 $q_{i,j,k} = u, d, s$

 $D^{i} = (D^{0}, D^{+}, D^{+}_{s})$

X.G.He, W.Wang, 2018; D.Wang, C.P.Jia, FSY, 2021

$$\mathcal{H} = \mathcal{H}_{ij}^k (\bar{q}^i q_k) (\bar{q}^j c)$$

Topological diagrams

- Under the SU(3) flavor symmetry
- Tensor indices are all contracted
- Completeness of topological diagrams:
 - For $D \to PP: A_4^4 2(A_3^3 1) = 14$ diagrams
 - For $D \rightarrow PV$: $A_4^4 = 24$ diagrams
- With the complete set of diagrams, we can then discuss the independence of diagrams

D.Wang, C.P.Jia, FSY, 2021

Topological diagrams

$$\begin{split} A &= TD^{i}\mathcal{H}_{lj}^{k}(P)_{i}^{j}(P)_{k}^{l} + CD^{i}\mathcal{H}_{jl}^{k}(P)_{i}^{j}(P)_{k}^{l} + ED^{i}\mathcal{H}_{il}^{j}(P)_{j}^{k}(P)_{k}^{l} + AD^{i}\mathcal{H}_{li}^{j}(P)_{j}^{k}(P)_{k}^{l} \\ &+ T^{ES}D^{i}\mathcal{H}_{ij}^{l}(P)_{l}^{j}(P)_{k}^{k} + T^{AS}D^{i}\mathcal{H}_{ji}^{l}(P)_{l}^{j}(P)_{k}^{k} + T^{LP}D^{i}\mathcal{H}_{kl}^{l}(P)_{i}^{j}(P)_{j}^{k} + T^{LC}D^{i}\mathcal{H}_{jl}^{l}(P)_{i}^{j}(P)_{k}^{k} \\ &+ T^{LA}D^{i}\mathcal{H}_{il}^{l}(P)_{j}^{k}(P)_{k}^{j} + T^{LS}D^{i}\mathcal{H}_{il}^{l}(P)_{j}^{j}(P)_{k}^{k} + T^{QP}D^{i}\mathcal{H}_{lk}^{l}(P)_{i}^{j}(P)_{j}^{k} + T^{QC}D^{i}\mathcal{H}_{lj}^{l}(P)_{i}^{j}(P)_{k}^{k} \\ &+ T^{QA}D^{i}\mathcal{H}_{li}^{l}(P)_{j}^{k}(P)_{k}^{j} + T^{QS}D^{i}\mathcal{H}_{li}^{l}(P)_{j}^{j}(P)_{k}^{k}. \end{split}$$

Before: directly draw all possible diagrams Now: systematically obtain all the diagrams

14 topological diagrams with tree operators

SU(3) decomposition

$$\mathcal{H} = \mathcal{H}_{ij}^k(\bar{q}^i q_k)(\bar{q}^j c) \qquad 3 \otimes \overline{3} \otimes 3 = 3_p \oplus 3_t \oplus \overline{6} \oplus 15$$

$$\mathcal{H}_{ij}^k = \delta_j^k \left(\frac{3}{8}\mathcal{H}(3_t)_i - \frac{1}{8}\mathcal{H}(3_p)_i\right) + \delta_i^k \left(\frac{3}{8}\mathcal{H}(3_p)_j - \frac{1}{8}\mathcal{H}(3_t)_j\right) + \epsilon_{ijl}\mathcal{H}(\overline{6})^{lk} + \mathcal{H}(15)_{ij}^k$$

$$A = a_3^p D^i \mathcal{H}(3_p)_i (P)_k^j (P)_j^k + b_3^p D^i \mathcal{H}(3_p)_i (P)_k^k (P)_j^j + c_3^p D^i \mathcal{H}(3_p)_k (P)_i^k (P)_j^j + d_3^p D^i \mathcal{H}(3_p)_k (P)_i^j (P)_j^k + a_3^t D^i \mathcal{H}(3_t)_i (P)_k^j (P)_j^k + b_3^t D^i \mathcal{H}(3_t)_i (P)_k^k (P)_j^j + c_3^t D^i \mathcal{H}(3_t)_k (P)_i^k (P)_j^j + d_3^t D^i \mathcal{H}(3_t)_k (P)_i^j (P)_j^k + a_6 D^i \mathcal{H}(\overline{6})_{ij}^k (P)_l^j (P)_k^l + b_6 D^i \mathcal{H}(\overline{6})_{ij}^k (P)_k^j (P)_l^l + c_6 D^i \mathcal{H}(\overline{6})_{jl}^k (P)_i^j (P)_k^l + a_{15} D^i \mathcal{H}(15)_{ij}^k (P)_l^j (P)_k^l + b_{15} D^i \mathcal{H}(15)_{ij}^k (P)_k^j (P)_l^l + c_{15} D^i \mathcal{H}(15)_{jl}^k (P)_i^j (P)_k^l.$$

14 SU(3) irreducible representations

same rule of tensor contraction to the topological diagrams, so the same number of amplitudes

$$\begin{split} A &= TD^{i}\mathcal{H}_{lj}^{k}(P)_{i}^{j}(P)_{k}^{l} + CD^{i}\mathcal{H}_{jl}^{k}(P)_{i}^{j}(P)_{k}^{l} - \\ &+ T^{ES}D^{i}\mathcal{H}_{ij}^{l}(P)_{l}^{j}(P)_{k}^{k} + T^{AS}D^{i}\mathcal{H}_{ji}^{l}(P)_{l}^{j} \\ &+ T^{LA}D^{i}\mathcal{H}_{il}^{l}(P)_{j}^{k}(P)_{k}^{j} + T^{LS}D^{i}\mathcal{H}_{il}^{l}(P)_{j}^{j} (P)_{j}^{j} \\ &+ T^{QA}D^{i}\mathcal{H}_{li}^{l}(P)_{j}^{k}(P)_{k}^{j} + T^{QS}D^{i}\mathcal{H}_{li}^{l}(P)_{j}^{j} \end{split}$$

$$\mathcal{H}_{ij}^k = \delta_j^k \left(\frac{3}{8}\mathcal{H}(3_t)_i - \frac{1}{8}\mathcal{H}(3_p)_i\right) + \delta_i^k \left(\frac{3}{8}\mathcal{H}(3_p)_j - \frac{1}{8}\mathcal{H}(3_t)_j\right) + \epsilon_{ijl}\mathcal{H}(\overline{6})^{lk} + \mathcal{H}(15)_{ij}^k$$

 $+ a_6 D^i \mathcal{H}(\overline{6})_{ij}^k (P)_l^j (P)_k^l + b_6 D^i \mathcal{H}(\overline{6})_{ij}^k (P)_k^j (P)_l^l + c_6 D^i \mathcal{H}(\overline{6})_{il}^k (P)_i^j (P)_k^l$ $+ a_{15}D^{i}\mathcal{H}(15)_{ij}^{k}(P)_{l}^{j}(P)_{k}^{l} + b_{15}D^{i}\mathcal{H}(15)_{ij}^{k}(P)_{k}^{j}(P)_{l}^{l} + c_{15}D^{i}\mathcal{H}(15)_{il}^{k}(P)_{i}^{j}(P)_{k}^{l}.$

Equivalence

 $+ ED^{i}\mathcal{H}^{j}_{il}(P)^{k}_{i}(P)^{l}_{k} + AD^{i}\mathcal{H}^{j}_{li}(P)^{k}_{j}(P)^{l}_{k}$ $(P)_k^k + T^{LP} D^i \mathcal{H}_{kl}^l (P)_i^j (P)_i^k + T^{LC} D^i \mathcal{H}_{il}^l (P)_i^j (P)_k^k$ $(P)_k^k + T^{QP} D^i \mathcal{H}_{lk}^l (P)_i^j (P)_i^k + T^{QC} D^i \mathcal{H}_{li}^l (P)_i^j (P)_k^k$ $(P)_{k}^{k}.$ topological approach

 $A = a_3^p D^i \mathcal{H}(3_p)_i (P)_k^j (P)_j^k + b_3^p D^i \mathcal{H}(3_p)_i (P)_k^k (P)_j^j + c_3^p D^i \mathcal{H}(3_p)_k (P)_i^k (P)_j^j + d_3^p D^i \mathcal{H}(3_p)_k (P)_i^j (P)_j^k$ $+ a_{3}^{t} D^{i} \mathcal{H}(3_{t})_{i} (P)_{k}^{j} (P)_{j}^{k} + b_{3}^{t} D^{i} \mathcal{H}(3_{t})_{i} (P)_{k}^{k} (P)_{j}^{j} + c_{3}^{t} D^{i} \mathcal{H}(3_{t})_{k} (P)_{i}^{k} (P)_{j}^{j} + d_{3}^{t} D^{i} \mathcal{H}(3_{t})_{k} (P)_{j}^{i} (P)_{j}^{k} + b_{3}^{t} D^{i} \mathcal{H}(3_{t})_{i} (P)_{j}^{k} (P)_{j}^{j} + c_{3}^{t} D^{i} \mathcal{H}(3_{t})_{k} (P)_{j}^{i} + d_{3}^{t} D^{i} \mathcal{H}(3_{t})_{k} (P)_{j}^{i} (P)_{j}^{k} + b_{3}^{t} D^{i} \mathcal{H}(3_{t})_{i} (P)_{j$ SU(3) decomposition

topological diagrams = SU(3) irreducible representations

Equivalence is obvious: H_{ij}^k is decomposed or not

$$T \times D^{i} \mathcal{H}_{lj}^{k}(P)_{i}^{j}(P)_{k}^{l} = T \times D^{i}(P)_{i}^{j}(P)_{k}^{l} \times \left[\delta_{j}^{k} \left(\frac{3}{8}\mathcal{H}(3_{t})_{l} - \frac{1}{8}\mathcal{H}(3_{p})_{l}\right) + \delta_{l}^{k} \left(\frac{3}{8}\mathcal{H}(3_{p})_{j} - \frac{1}{8}\mathcal{H}(3_{t})_{j}\right) + \varepsilon_{ljm}\mathcal{H}(\overline{6})^{mk} + \mathcal{H}(15)_{lj}^{k} \right]$$

Tree operators and penguin operators separated

$$\mathcal{H}_{ij}^{k} = \delta_{j}^{k} \left(\frac{3}{8} \mathcal{H}(3_{t})_{i} - \frac{1}{8} \mathcal{H}(3_{p})_{i} \right) + \delta_{i}^{k} \left(\frac{3}{8} \mathcal{H}(3_{p})_{j} - \frac{1}{8} \mathcal{H}(3_{t})_{j} \right) + \epsilon_{ijl} \mathcal{H}(\overline{6})^{lk} + \mathcal{H}(15)_{ij}^{k}$$

D.Wang, C.P.Jia, FS

$$\mathcal{H}_{\text{eff}}^{\text{SM}} = \frac{G_F}{\sqrt{2}} \left[\sum_{q=d,s} V_{cq_1}^* V_{uq_2} \left(\sum_{q=1}^2 C_i(\mu) O_i(\mu) \right) - V_{cb}^* V_{ub} \left(\sum_{i=3}^6 C_i(\mu) O_i(\mu) + C_{8g}(\mu) O_{8g}(\mu) \right) \right]$$

Difference with He&Wang2018

$$\bar{H}_{k}^{ij} = \frac{1}{8} (H_{\overline{15}})_{k}^{ij} + \frac{1}{4} (H_{6})_{k}^{ij} + \frac{1}{8} (H_{\overline{3}})^{i} \delta_{k}^{j} + \frac{3}{8} (H_{\overline{3}'})^{j} \delta_{k}^{i}$$

$$\mathcal{A} = V_{ub} V_{uq}^* \mathcal{A}_u + V_{tb} V_{tq}^* \mathcal{A}_t$$

u and c loops

X.G.He, W.Wang, 2018

X.G.He, Y.J.Shi, W.Wang, 2018

c and t loops

Topological diagrams = Irreducible representations

Advantages:

a) Mathematical foundation of topological approach is clear now

Topological diagrams = Irreducible representations

Advantages:

Mathematical foundation of topological approach is clear now a)

b) Are all topological diagrams independent with each other?

NO !!

channel	IRA
$B^- \rightarrow \pi^0 \pi^-$	$4\sqrt{2}C_{15}^T$
$B^- \rightarrow \pi^- \eta_8$	$\sqrt{\tfrac{2}{3}} \left(A_6^T \! + \! 3A_{15}^T \! + \! C_3^T \! - \! C_6^T \! + \! 3C_{15}^T \right)$
$B^- \rightarrow \pi^- \eta_1$	$\frac{1}{\sqrt{3}} (2A_6^T + 6A_{15}^T + 3B_6^T + 9B_{15}^T + 2C_3^T + C_6^T + 3C_{15}^T + 3D_{15}^T + 3D_{15}^T + 2C_3^T + C_6^T + 3C_{15}^T + 3D_{15}^T + 2C_3^T + 2C_$
$B^- \! \rightarrow \! K^0 K^-$	$A_6^T\!+\!3A_{15}^T\!+\!C_3^T\!-\!C_6^T\!-\!C_{15}^T$
$\overline{B}^0 \! ightarrow \! \pi^+ \pi^-$	$2A_3^T\!-\!A_6^T\!+\!A_{15}^T\!+\!C_3^T\!+\!C_6^T\!+\!3C_{15}^T$
$\overline{B}^0 \rightarrow \pi^0 \pi^0$	$2A_3^T\!-\!A_6^T\!+\!A_{15}^T\!+\!C_3^T\!+\!C_6^T\!-\!5C_{15}^T$

- X.G.He & W.Wang found one amplitude is not independent [He, Wang, 2018]

 (p_{3}^{T})

$$\begin{bmatrix} C_6^T &= & C_6^T - & A_6^T \\ B_6^T &= & B_6^T + & A_6^T \end{bmatrix}$$

one irreducible amplitude is not independent

One topological diagram is not independent !!

One diagram not independent

Now the reason:

l,k : symmetric

One diagram not independent

$$\begin{aligned} \mathcal{H}_{ij}^{k} &= \delta_{j}^{k} \left(\frac{3}{8} \mathcal{H}(3_{t})_{i} - \frac{1}{8} \mathcal{H}(3_{p})_{i} \right) + \delta_{i}^{k} \left(\frac{3}{8} \mathcal{H}(3_{p})_{j} - \frac{1}{8} \mathcal{H}(3_{t})_{j} \right) + \epsilon_{ijl} \mathcal{H}(\overline{6})^{lk} + \mathcal{H}(15)_{ij}^{k} \\ \\ \mathcal{H}_{ij}^{l} &= a_{6} D^{i} \epsilon_{ijm} \mathcal{H}(\overline{6})^{km}(P)_{l}^{j}(P)_{k}^{l} = a_{6} D_{[jm]} \mathcal{H}(\overline{6})^{km}(P)_{l}^{j}(P)_{k}^{l} \\ \mathcal{H}_{ij}^{l} &= b_{6} D^{i} \epsilon_{ijm} \mathcal{H}(\overline{6})^{km}(P)_{k}^{j}(P)_{l}^{l} = b_{6} D_{[jm]} \mathcal{H}(\overline{6})^{km}(P)_{k}^{j}(P)_{k}^{l} \\ \mathcal{H}_{ij}^{l} &= \frac{1}{2} c_{6} \epsilon^{pqi} \epsilon_{jlm} D_{[pq]} \mathcal{H}(\overline{6})^{km}(P)_{i}^{j}(P)_{k}^{l} \\ &= c_{6} [-D_{[jm]} \mathcal{H}(\overline{6})^{km}(P)_{i}^{j}(P)_{k}^{l} + D_{[jm]} \mathcal{H}(\overline{6})^{km}(P)_{k}^{j}(P)_{l}^{l} \\ &= a_{6} - c_{6}, \qquad b_{6}' = b_{6} + c_{6} \end{aligned}$$

$$\begin{aligned} \mathcal{H}_{ij}^{k} &= \delta_{j}^{k} \left(\frac{3}{8} \mathcal{H}(3_{l})_{i} - \frac{1}{8} \mathcal{H}(3_{p})_{i} \right) + \delta_{i}^{k} \left(\frac{3}{8} \mathcal{H}(3_{p})_{j} - \frac{1}{8} \mathcal{H}(3_{l})_{j} \right) + \epsilon_{ijl} \mathcal{H}(\overline{6})^{lk} + \mathcal{H}(15)_{ij}^{k} \\ \\ \mathcal{H}(\overline{6})_{ij}^{k}(P)_{i}^{j}(P)_{k}^{l} &= a_{6}D^{i}\epsilon_{ijm} \mathcal{H}(\overline{6})^{km}(P)_{i}^{j}(P)_{k}^{l} \\ \\ \mathcal{h}_{6}D^{i}\mathcal{H}(\overline{6})_{ij}^{k}(P)_{i}^{j}(P)_{k}^{l} &= b_{6}D^{i}\epsilon_{ijm} \mathcal{H}(\overline{6})^{km}(P)_{i}^{j}(P)_{k}^{l} \\ \\ \mathcal{h}_{6}D^{i}\mathcal{H}(\overline{6})_{ij}^{k}(P)_{i}^{j}(P)_{k}^{l} &= b_{6}D^{i}\epsilon_{ijm} \mathcal{H}(\overline{6})^{km}(P)_{i}^{j}(P)_{k}^{l} \\ \\ \mathcal{h}_{6}D^{i}\mathcal{H}(\overline{6})_{ij}^{k}(P)_{i}^{j}(P)_{k}^{l} &= b_{6}D^{i}\epsilon_{ijm} \mathcal{H}(\overline{6})^{km}(P)_{i}^{j}(P)_{k}^{l} \\ \\ \mathcal{h}_{6}D^{i}\mathcal{H}(\overline{6})_{ij}^{k}(P)_{i}^{j}(P)_{k}^{l} &= \frac{1}{2}c_{6}\epsilon^{pqi}\epsilon_{jlm} D_{[pq]}\mathcal{H}(\overline{6})^{km}(P)_{i}^{j}(P)_{k}^{l} \\ \\ \mathcal{h}_{6}D^{i}\mathcal{H}(\overline{6})_{ij}^{k}(P)_{i}^{j}(P)_{k}^{l} &= \frac{1}{2}c_{6}\epsilon^{pqi}\epsilon_{jlm} D_{[pq]}\mathcal{H}(\overline{6})^{km}(P)_{i}^{j}(P)_{k}^{l} \\ \\ \mathcal{h}_{6}D^{i}\mathcal{H}(\overline{6})_{il}^{k}(P)_{i}^{j}(P)_{k}^{l} &= \frac{1}{2}c_{6}\epsilon^{pqi}\epsilon_{jlm} D_{[pq]}\mathcal{H}(\overline{6})^{km}(P)_{i}^{j}(P)_{k}^{l} \\ \\ \mathcal{H}(\overline{6})_{k}^{k}(P)_{i}^{j}(P)_{k}^{l} \\$$

$$a_6' = a_6 - c_6, \qquad b_6' = b_6 + b_6' = b_6 + b_6' = b_6' + b_6' + b_6' + b_6' = b_6' + b_6$$

D.Wang, C.P.Jia, FSY, 2021

One diagram not independent

$$H(\overline{6})_{ij}^{k} = \varepsilon_{ijl} H(\overline{6})^{lk}$$

$$a_{6} = E - A, \quad b_{6} = E - A, \quad b_{15} = E + A, \quad b_{15}$$

1. If data of $\eta(\eta')$ included, one of T, C, E, A, SE, SA is **not independent**

one of a_6 , b_6 , c_6 not independent

 $= SE - SA, \qquad c_6 = -T + C,$ $= SE + SA, \qquad c_{15} = T + C,$ $a_3^{p} = -\frac{1}{8}E + \frac{3}{8}A + T^{QA},$

2. If data of $\eta(\eta')$ included, but SE, SA neglected, all of T,C,E,A are independent

3. If data of $\eta(\eta')$ excluded, and SE, SA excluded, one of T,C,E,A is **not independent**

Topological diagrams = Irreducible representations

Advantages:

- a) Mathematical foundation of topological approach is clear now
- b) One topological diagram is not independent due to SU(3) structure
- c) How to systematically consider the flavor symmetry breaking effects?

$$\begin{aligned} \mathcal{H} &= \mathcal{H}_0 + \mathcal{H}_1 \\ \swarrow \\ m_u &= m_d = m_s \end{aligned} \qquad \begin{aligned} \mathcal{H}_{\underline{\mathrm{SU}(3)_F}} &= (m_s - m_d) \overline{s}s \end{aligned}$$

SU(3) flavor symmetry:

$$\mathcal{A}_{D_{\gamma} \to P_{\alpha} P_{\beta}}^{\text{TDA}} = T(D_{\gamma})_i (H)_k^{lj} (P_{\alpha})_j^i (P_{\beta})_l^k + C$$
$$+ A(D_{\gamma})_i (H)_j^{li} (P_{\alpha})_k^j (P_{\beta})_l^k + C$$

Linear SU(3) breaking:

$$\begin{aligned} \mathcal{A}_{D_{\gamma} \to P_{\alpha} P_{\beta}}^{\text{TDA}, \text{SU(3)}_{F}} &= T(D_{\gamma})_{i}(H)_{k}^{lj}(P_{\alpha})_{j}^{i}(P_{\beta})_{l}^{k} + T_{1}(D_{\gamma})_{j}(D_{\gamma})_{j}^{k}(P_{\alpha})_{j}^{j}(P_{\beta})_{l}^{k} + C(P_{\alpha})_{j}^{k}(P_{\alpha})_{j}^{k}(P_{\beta})_{l}^{k} + C(P_{\alpha})_{j}^{k}(P_{\beta})_{l}^{k})_{l}^{k} + C(P_{\alpha})_{j}^{k}(P_{\alpha})_{j}^{j}(P_{\beta})_{l}^{k} + C(P_{\alpha})_{j}^{k}(P_{\beta})_{l}^{k})_{l}^{k} + C_{2}(D_{\gamma})_{i}(H)_{j}^{li}(P_{\alpha})_{j}^{j}(P_{\alpha})_{k}^{k}(P_{\beta})_{l}^{k} + C_{2}(P_{\alpha})_{j}^{k}(P_{\beta})_{l}^{k})_{l}^{k} + C_{2}(P_{\alpha})_{i}^{k}(P_{\beta})_{l}^{k} + C_{2}(P_{\alpha})_{i}^{k}(P_{\beta})_{i}^{k} + C_{2}(P_{\alpha})_{i}^{k}(P_{\alpha})_{i}^{k} + C_{2}(P_{\alpha})_{i}^{k} + C_{2}(P_{\alpha})_{i}^{$$

Reproduce the results of [Muller, Nierste, Schacht, 2015]

$C(D_{\gamma})_{i}(H)_{k}^{jl}(P_{\alpha})_{j}^{i}(P_{\beta})_{l}^{k} + E(D_{\gamma})_{i}(H)_{j}^{il}(P_{\alpha})_{k}^{j}(P_{\beta})_{l}^{k}$ $T^{LP}(D_{\gamma})_{i}(H)_{l}^{kl}(P_{\alpha})_{i}^{i}(P_{\beta})_{k}^{j}$

Explicit expression for strange quark

 $(P_{\gamma})_{i}(H)_{k}^{l3}(P_{\alpha})_{3}^{i}(P_{\beta})_{l}^{k} + T_{2}(D_{\gamma})_{i}(H)_{3}^{lj}(P_{\alpha})_{j}^{i}(P_{\beta})_{l}^{3}$ $(D_{\gamma})_{i}(H)_{k}^{jl}(P_{\alpha})_{i}^{i}(P_{\beta})_{l}^{k} + C_{1}(D_{\gamma})_{i}(H)_{k}^{j3}(P_{\alpha})_{i}^{i}(P_{\beta})_{3}^{k}$ $_{3}(D_{\gamma})_{3}(H)_{k}^{jl}(P_{\alpha})_{j}^{3}(P_{\beta})_{l}^{k} + E(D_{\gamma})_{i}(H)_{j}^{il}(P_{\alpha})_{k}^{j}(P_{\beta})_{l}^{k}$ $E_2(D_{\gamma})_i(H)_3^{il}(P_{\alpha})_k^3(P_{\beta})_l^k + E_3(D_{\gamma})_i(H)_i^{il}(P_{\alpha})_3^j(P_{\beta})_l^3$ $(D_{\gamma})_{3}(H)_{j}^{l3}(P_{\alpha})_{k}^{j}(P_{\beta})_{l}^{k} + A_{2}(D_{\gamma})_{i}(H)_{3}^{li}(P_{\alpha})_{k}^{3}(P_{\beta})_{l}^{k}$ $\sum_{\text{reak}}^{LP} (D_{\gamma})_{i} (H)_{3}^{k3} (P_{\alpha})_{j}^{i} (P_{\beta})_{k}^{j} + \alpha \leftrightarrow \beta,$

D.Wang, C.P.Jia, FSY, 2021

Topological diagrams = Irreducible representations

Advantages:

- a) Mathematical foundation of topological approach is clear now
- b) One topological diagram is not independent due to SU(3) structure
- c) Systematically consider the flavor symmetry breaking effects
- d) Why topological diagrams are universal to all processes in the SU(3) symmetry?

$$A(D^0 \to K^- \pi^+) = T + E$$
$$A(D^0 \to \overline{K}{}^0 \pi^0) = (C - E)/\sqrt{2}$$
$$A(D^+ \to \overline{K}{}^0 \pi^+) = T + C$$
$$A(D_s^+ \to \overline{K}{}^0 K^+) = C + A$$

No reason not to be universal under the SU(3) symmetry

Good, but not good enough !

amplitude

 $a_{\overline{6}}D^{t}H(\overline{6})_{ij}^{k}P_{m}^{n}P_{r}^{s} + b_{15}D^{t}H(15)_{ij}^{k}P_{m}^{n}P_{r}^{s} + \dots$ $\langle j\,m|T_q^{(k)}|j'\,m'
angle = \langle j'\,m'\,k\,q|j\,m
angle \langle j\|T^{(k)}\|j'
angle$

CG reduced coefficients matrix elements independent on process related processes

Topological diagrams = Irreducible representations

Advantages:

- a) Mathematical foundation of topological approach is clear now
- b) One topological diagram is not independent due to SU(3) structure
- c) Systematically consider the flavor symmetry breaking effects
- d) Wigner-Eckart theorem -> Topological diagrams are universal
- e) Why each topological diagram includes all strong-interacting effects? Even FSI effects?

e) Why each topological diagram includes all stronginteracting effects? Even FSI effects?

SU(3) irreducible representation:

QCD corrections = flavor SU(3) singlet operators

- The SU(3) structure is not changed by QCD corrections
- Irreducible amplitudes include all the strong interaction !

 $A = (a_{\overline{6}})^{t} D^{t} H(\overline{6})^{k}_{ii} P^{n}_{m} P^{s}_{r} + (b_{15})^{t} D^{t} H(15)^{k}_{ij} P^{n}_{m} P^{s}_{r} + \dots$

Advantages:

Topological diagrams = Irreducible representations

D. Wang, C. P. Jia and F. S. Yu, JHEP 09, 126 (2021).

QCD = Topological diagrams

QCD = Short-distance contributions of topological diagrams

Topological diagrams = SU(3) irreducible representations

 $T = 2C_6^T + 4C_{15}^T, \quad C = 4C_{15}^T - 2C_6^T, \quad A = 2A_6^T + 4A_{15}^T, \quad E = 4A_{15}^T - 2A_6^T,$ $T_P = -A_6^T - A_{15}^T + C_3^T - C_6^T - C_{15}^T, \ T_{PA} = A_3^T + A_6^T - A_{15}^T, \ T_{AS} = 4B_{15}^T - 2B_6^T,$ $T_{ES} = 2B_6^T + 4B_{15}^T, \ T_{SS} = B_3^T + B_6^T - B_{15}^T, \ T_S = -B_6^T - B_{15}^T + C_6^T - C_{15}^T + D_3^T.$

Topological diagrams = QCDF

$$T = A_{M_1M_2} \left[\alpha_1 + \frac{3}{2} \alpha_{4,EW}^u - \frac{3}{2} \alpha_{4,EW}^c \right], \qquad C = A_{M_1M_2} \left[\alpha_2 + \frac{3}{2} \alpha_{3,EW}^u - \frac{3}{2} \alpha_{3,EW}^c \right],$$
$$E = A_{M_1M_2} \left[\beta_1 + \frac{3}{2} b_{4,EW}^u - \frac{3}{2} b_{4,EW}^c \right], \qquad A = A_{M_1M_2} \left[\beta_2 + \frac{3}{2} \beta_{3,EW}^u - \frac{3}{2} \beta_{3,EW}^c \right],$$
$$T_{AS} = A_{M_1M_2} \left[\beta_{S1} + \frac{3}{2} b_{S4,EW}^u - \frac{3}{2} b_{S4,EW}^c \right], \qquad T_{ES} = A_{M_1M_2} \left[\beta_{S2} + \frac{3}{2} \beta_{S3,EW}^u - \frac{3}{2} \beta_{S3,EW}^c \right]$$
$$A_{M_1M_2} = M_B^2 F_0^{B \to M_1}(0) f_{M_2}$$

Doing a global fit [T.Huber, Tetlalmatzi-Xolocotzi, 2021]

Final-state interaction = Topological diagrams

FSI = Long-distance contributions of topological diagrams [D.Wang, 2021]

Summary

FSI = QCD = Topological diagrams = SU(3) irreducible representations

Thank you!

Backups

Heavy Flavor Physics

- •1980-2000, To test the SM (KM mechanism)
- 2000-now, To precisely test the SM and search for NP

CP violation:

2003

- •SM: KM mechanism, the only one phase in
- •BSM: Matter-antimatter in the Universe requires more CPV, needs new CPV source

the SM
$$V_{\rm CKM} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}\\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta} & s_{23}\\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta} & c_{23} & s_{23} & s_$$

30

Direct CPV in hadronic weak decays

• Distinguishable for the KM mechanism from the superweak interaction [Wolfenstein, 1964]

$$A_{CP} = -\frac{2|a_1a_2|\sin(\delta_2 - \delta_1)\sin(\phi_2 - \phi_1)}{|a_1|^2 + |a_2|^2 + 2|a_1a_2|\cos(\delta_2 - \delta_1)\cos(\phi_2 - \phi_1)}$$

- CPV conditions: 1. At least two amplitudes
 - 2. with different weak phases
 - 3. with different strong phases

$$A_{f} = |a_{1}|e^{i(\delta_{1}+\phi_{1})} + |a_{2}|e^{i(\delta_{2}+\delta_{2}+\delta_{2})}$$
$$\overline{A}_{\overline{f}} = |a_{1}|e^{i(\delta_{1}-\phi_{1})} + |a_{2}|e^{i(\delta_{2}-\delta_{2}+\delta_{2}+\delta_{2})}$$

Need QCD dynamics !

Most significant processes in exp charm

1. First observation of charm CPV

 $\Delta A_{CP} = A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-) = (-1.54 \pm 0.29) \times 10^{-3}$

2. First observation of double-charm baryon LHCb, 2017

$$\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$$

Topological diagrammatic approach plays an important role in the predictions

CPV LHCb, 2019

《物理世界》2019年十大突破

2017年度中国科学十大进展

Topological Amplitudes

- Decaying amplitudes are classified • according to the weak flavour flows
- All the strong interaction effects are • included. Therefore, non-perturbative contributions are all considered.
 - Amplitudes extracted from data

Chau, '86; Chau, Cheng, '87; Bhattacharya, Rosner, '08; Cheng, Chiang, '10

Always in the flavour **SU(3)** symmetry limit

Topological Amplitudes

 $T = 3.14 \pm 0.06$, $C = (2.61 \pm 0.08)e^{-i(152 \pm 1)^{\circ}}$, $E = (1.53^{+0.07}_{-0.08})e^{i(122\pm2)^{\circ}}, \qquad A = (0.39^{+0.13}_{-0.09})e^{i(31^{+20}_{-33})^{\circ}}$

Meson		Mode	Representation	\mathcal{B}_{exp} (%)	$\mathcal{B}_{ ext{fit}}$ (%)
$\overline{D^0}$		$K^{-}\pi^{+}$	$V_{cs}^* V_{ud}(T+E)$	3.91 ± 0.08	3.91 ± 0.17
		$ar{K}^0 \pi^0$	$\frac{1}{\sqrt{2}}V_{cs}^*V_{ud}(C-E)$	2.38 ± 0.09	2.36 ± 0.08
		$ar{K}^0 oldsymbol{\eta}$	$V_{cs}^* V_{ud} \left[\frac{1}{\sqrt{2}} (C+E) \cos \phi - E \sin \phi \right]$	0.96 ± 0.06	0.98 ± 0.05
		$ar{K}^0 oldsymbol{\eta}'$	$V_{cs}^* V_{ud} \left[\frac{\sqrt{1}^2}{\sqrt{2}} (C+E) \sin \phi + E \cos \phi \right]$	1.90 ± 0.11	1.91 ± 0.09
D^+		$ar{K}^0 \pi^+$	$V_{cs}^*V_{ud}(T+C)$	3.07 ± 0.10	3.08 ± 0.36
D_s^+		$ar{K}^0K^+$	$V_{cs}^* V_{ud}(C+A)$	2.98 ± 0.17	2.97 ± 0.32
2		$\pi^+\pi^0$	0	< 0.037	0
		$\pi^+ \eta$	$V_{cs}^* V_{ud}(\sqrt{2}A\cos\phi - T\sin\phi)$	1.84 ± 0.15	1.82 ± 0.32
		$\pi^+\eta^\prime$	$V_{cs}^* V_{ud}(\sqrt{2}A\sin\phi + T\cos\phi)$	3.95 ± 0.34	3.82 ± 0.36
Meson	Mode		Representation	\mathcal{B}_{exp} ($ imes 10^{-3}$)	$\mathcal{B}_{\text{theory}}$ ($ imes 10^{-3}$)
$\overline{D^0}$	$\pi^+\pi^-$		$V_{cd}^*V_{ud}(T'+E')$	1.45 ± 0.05	2.24 ± 0.10
	$\pi^0\pi^0$		$\frac{1}{\sqrt{2}}V_{cd}^*V_{ud}(C'-E')$	0.81 ± 0.05	1.35 ± 0.05
	$oldsymbol{\pi}^{0}oldsymbol{\eta}$		$-V_{cd}^*V_{ud}\vec{E}'\cos\phi - \frac{1}{\sqrt{2}}V_{cs}^*V_{us}C'\sin\phi$	0.68 ± 0.07	0.75 ± 0.02
	$\pi^0 \eta^\prime$		$-V_{cd}^*V_{ud}E'\sin\phi + \frac{\Upsilon^2}{\sqrt{2}}V_{cs}^*V_{us}C'\cos\phi$	0.91 ± 0.13	0.74 ± 0.02
	$\eta \eta$	$-\frac{1}{\sqrt{2}}V$	$V_{ud}(C' + E')\cos^2\phi + V_{cs}^{*}V_{us}(2E'\sin^2\phi - \frac{1}{\sqrt{2}}C'\sin^2\phi)$	1.67 ± 0.18	1.44 ± 0.08
	$\eta\eta^\prime$	$-\frac{1}{2}V_{c}^{*}$	$V_{ud}(C' + E') \sin 2\phi + V_{cs}^* V_{us}(E' \sin 2\phi - \frac{1}{\sqrt{2}}C' \cos 2\phi)$	1.05 ± 0.26	1.19 ± 0.07
	K^+K^-	2 0	$V_{cs}^* V_{us} (T' + E')$	4.07 ± 0.10	1.92 ± 0.08
	$K^0ar{K}^0$		$V_{cd}^*V_{ud}E_s' + V_{cs}^*V_{us}E_d'^{\mathrm{a}}$	0.64 ± 0.08	0

Cheng, Chiang,'10

Under flavor SU(3) symmetry

SU(3) breaking effects should be considered

Factorization-Assisted Topological-Amplitude Approach (FAT)

(a) T

(c) A

(d) E

Li, Lu, FSY, '12; Qin, Li, Lu, FSY, '14

- Dynamics In factorization:
- Short-distance:
 Wilson coefficients
- Long-distance: hadronic matrix elements

Non-perturbative quantities

W-annihilation (A) W-exchange (E)

 $\langle P_1 P_2 | \mathcal{H}_{\text{eff}} | D \rangle_{E,A} = \frac{G_F}{\sqrt{2}} V_{\text{CKM}} b_{q,s}^{E,A}(\mu) f_D m_D^2 \left(\frac{f_{P_1} f_{P_2}}{f_z^2} \right)$

SU(3) breaking effects

Li, Lu, **FSY**, '12

A: $b_{q,s}^{A}(\mu) = C_{1}(\mu) \chi_{q,s}^{A} e^{i\phi_{q,s}^{A}}$ E: $b_{q,s}^{E}(\mu) = C_{2}(\mu) \chi_{q,s}^{E} e^{i\phi_{q,s}^{E}}$

nonperturbative contributions

Modes	Br(exp)	Br(this work)	$A_{CP}^{\rm SM} \times 10^{-3}$	3
$\overline{D^0 o \pi^+ \pi^-}$	1.45 ± 0.05	1.43	0.58	$\Delta SM - 1 \times 10^{-3}$
$D^0 \longrightarrow K^+ K^-$	4.07 ± 0.10	4.19	-0.42	$\Gamma_{CP} = 1 \times 10$
$D^0 \rightarrow K^0 \bar{K}^0$	0.320 ± 0.038	0.36	1.38	
$D^0 \longrightarrow \pi^0 \pi^0$	0.81 ± 0.05	0.57	0.05	1 Understand OCD dynam
$D^0 o \pi^0 \eta$	0.68 ± 0.07	0.94	-0.29	T. Onderstand GOD dynan
$D^0 ightarrow \pi^0 \eta'$	0.91 ± 0.13	0.65	1.53	@ 1Gev
$D^0 \rightarrow \eta \eta$	1.67 ± 0.18	1.48	0.18	by Branching Ratios
$D^0 \longrightarrow \eta \eta'$	1.05 ± 0.26	1.54	-0.94	
$D^+ o \pi^+ \pi^0$	1.18 ± 0.07	0.89	0	
$D^+ \rightarrow K^+ \bar{K}^0$	6.12 ± 0.22	5.95	-0.93	2 than prodict
$D^+ o \pi^+ \eta$	3.54 ± 0.21	3.39	-0.26	Z. then predict
$D^+ o \pi^+ \eta'$	4.68 ± 0.29	4.58	1.18	charm CPV
$D_S^+ \rightarrow \pi^0 K^+$	0.62 ± 0.23	0.67	0.39	
$D_S^+ \rightarrow \pi^+ K^0$	2.52 ± 0.27	2.21	0.84	
$D_S^+ \to K^+ \eta$	1.76 ± 0.36	1.00	0.70	
$D_S^+ \to K^+ \eta'$	1.8 ± 0.5	1.92	-1.60	
		- ^		Li, Lu, FSY , '12

@ BESIII & CLEO

$$\Delta A_{CP} = A_{CP}(D^0 -$$

 $\rightarrow K^+K^-) - A_{CP}(D^0 \rightarrow \pi^+\pi^-)$

Th: the only prediction of O(10⁻³)

CC: H.Y.Cheng, C.W.Chiang, PRD2012

LLY: H.n.Li, C.D.Lu, **FSY**, PRD2012

EXP: LHCb 2011; CDF 2012; Belle 2012

 $\Delta A_{CP} = A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-)$

Saur, FSY, Sci.Bull.2020

Th: the only predictions of O(10-3)

CC: topological approach

H.Y.Cheng, C.W.Chiang, 2012

LLY: factorization-assisted topology (FAT)

H.n.Li, C.D.Lu, FSY, 2012

Exp: LHCb, PRL122, 211803 (2019)

Topological diagrammatic approach successfully predicted the charm CPV !!!

Double-charm baryons

Double-charm baryons are predicted in SU(4) quark model ullet

De Rujula, Georgi and Glashow, 1975; Jaffe, J. E. Kiskis, 1976; Ponce, 1979

- A heavy 'double-star' system with an attached light 'planet', much different from light baryons. Open a new window for QCD properties
- Two problems in the exp searches: Production and Decay
- Production problem was solved at the beginning of LHC running
- Decay properties are the key problem in the LHCb searches of ulletdoubly charmed baryons.

FSY, Sci.China.PMA, 2020

Statistics requires: largest branching ratios and easily detected ullet

Branching Fractions: topological diagrams

- Topological diagrammatic approach is suitable for hadronic charm decays
- Include non-perturbative contributions
- It works well in D decays
- It needs experimental data to extract the topological amplitudes
- No experimental data available in doublecharm baryons

Chau,'86; Chau, Cheng,'87; Bhattacharya, Rosner, '08; Cheng, Chiang, '10; Li, Lu, FSY, '12

Branching Fractions: topological diagrams

- Hierarchy of topological diagrams in heavy quark expansion
 - SCET: $IC/TI \sim IC'/TI \sim IE/TI \sim O(\Lambda_{OCD}/m_0)$ Leibovich, Ligeti, Stewart, Wise, 2004
 - charm decay: $|C/T| \sim |C'/T| \sim |E/T| \sim O(\Lambda_{OCD}/m_c) \sim 1$
- BESIII measurements on Λ_c^+ decays are important

BESIII, 2016

Non-leptonic decays of Ξ_{cc}^{++}

Modes	$Br(first)(\times 10^{-3}$) Br(final)($\times 10^{-3}$)	Representation
$p(D^+/D^0\pi^+)$	<u>e</u> 8.	0.2	Ccm Vcd Vud
$p(D_s^+/D^0K^+)$	0.4	0.01	Ccm Vcd Vus
$(pK^{-}\pi^{+}/\Sigma^{+})(D^{+}/D^{0}\pi^{+})$	<u>e</u> 80.	2.	Ccm Vcs Vud
$(pK^{-}\pi^{+}/\Sigma^{+})(D_{s}^{+}/D^{0}K^{+})$	3.	0.1	Ccm Vcs Vus
$(\Lambda_c^+\pi^+)(\pi^+\pi^-)$	3.	0.2	-(Ct Vcd Vud)
$(\Lambda_c^+\pi^+)(K^+\pi^-)$	0.2	0.008	Ct Vcd Vus
$(\Lambda_c^+\pi^+)(K^-\pi^+)$	<u>.</u> 50.	3.	Ct Vcs Vud
$(\Lambda_c^+\pi^+)(K^+K^-)$	2.	0.08	Ct Vcs Vus
$\Lambda_c^+\pi^+$	30.	1.	Ccb Vcd Vud + T Vcd Vud
$\Lambda_c^+ K^+$	1.	0.06	Ccb Vcd Vus + T Vcd Vus
$(\Lambda_c^+\pi^+K^-/\Xi_c^+)\pi^+$	e 400.	20.	Ccb Vcs Vud + T Vcs Vud
$(\Lambda_c^+ \pi^+ K^- / \Xi_c^+) K^+$	20.	0.9	Ccb Vcs Vus + T Vcs Vus

discovery channels: Br=O(10

$$\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$$

Talk at LHCb China group in 2016.12 and LHCb charm group in 2017.03

Discovery potentials of doubly charmed baryons^{*}

Cai-Dian Lü(吕才典)^{4,5;2)} Run-Hui Li(李润辉)³ Fu-Sheng Yu(于福升)^{1,2;1)} Hua-Yu Jiang(蒋华玉)^{1,2} Wei Wang(王伟)^{6;3)} Zhen-Xing Zhao(赵振兴)⁶

Topological diagrammatic approach successfully predicted the discovery channels of double-charm baryon !!!

What's more?

- Topological diagrammatic approach is powerful: successfully predict the charm CPV and Ξ_{cc}^{++} discovery channels. So far so good.
- Currently it is a phenomenological approach, but what is its mathematical foundation?
- Further studies: Deep understanding on the topological approach
 - What is the complete set of topological diagrams?
 - Are they all independent with each other?
 - Can the SU(3) breaking effects be systematically studied?

Topological diagrams = SU(3) irreducible representations

