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Literature, Material
● Deep Learning, Goodfellow et al.

deeplearningbook.org
● Deep Learning for Physics Research,

Erdmann et al., deeplearningphysics.org
● Introduction to Machine Learning with Python,

https://github.com/amueller/introduction_to_ml_with_python
● HSF: Introduction to Machine Learning,

https://hsf-training.github.io/hsf-training-ml-webpage/
● ...

https://hsf-training.github.io/hsf-training-ml-webpage/
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Human vs. Computer

591342.46 0.724

Easy for computers,
hard for humans

Easy for humans,
hard for computers

xkcd.com
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Neurons

➔ Connectionism: Solving complex problems
by combining many simple, generic elements 

Human: ~1011 neurons with
~104 connections each,
~12 watt

Insects: ~106 neurons with
~103 connections each

GPGPU:~103-4 cores
~200 watt

FPGA: ~107 cells
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Multi Layer Perceptron

➔ Each node: xi → f(∑wixi), weights wi, activation function f
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Output
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Activation Functions
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Machine Learning
➔ Task defines desired relation between input and output

➔ Network implements a model

➔ Model is trained on the 
experience of a data set

➔ Supervised with 
labeled data

➔ Unsupervised with 
unlabeled data

➔ Choice of model parameters?

Deep
Learning

Machine
Learning

Artificial
Intelligence
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Loss Function
➢ Deviation of actual network output o from desired target value t (label) 

measured by loss (or error, or cost, or objective) function L for all data points 
with index i=1..N

● Common loss function for regression:

➔ Mean squared error (MSE): L = 1/N ∑i (oi – ti)2

● Common loss function for classification (with estimated probability qk=ok and 
true probability pk=tk, usually 0 or 1, for class k):

➔ Cross entropy for m classes: L = –∑i ∑k=1..m pi
k ln(qi

k)

➔ Cross entropy for two classes: L = –∑i pi ln(qi) + (1–pi) ln(1-qi)

➢ Minimization of loss function → optimization problem
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Information Content of Events
● Should be 

higher for less 
likely events

● Should add up 
for independent 
events

➔ Information content of 
event with probability p:  
I = –ln(p)

 Unit: nat (or nit) for ln, bit for log2
coin flip probability

deeplearningbook.org
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Cross Entropy
● Average information content for a distribution p of events:

  limn→∞ 1/n ∑events Ij = –∑states pi ln(pi) =: H(p)
➢ Shannon entropy H(p):

➔ Average number of nats of a message about an event
for optimal encoding for distribution p

● Cross entropy for distribution q:

  H(p,q) = –∑ pi ln(qi) 
    = –∑ pi [ln(qi) + ln(pi) – ln(pi)] = H(p) – ∑ pi ln(qi/pi)

➔ Kullback-Leibler divergence: DKL(p,q) = –∑ pi ln(qi/pi)

➔ Average additional number of nats needed for a message about an event
for optimal encoding assuming distribution q
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Kullback-Leibler Divergence
➔ Measure of difference between distributions
➔ Minimum of 0 if and only if q = p
● Not symmetric (→ not a distance measure) 

deeplearningbook.org
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Maximum Likelihood
● Probability (density) of single event given by qj

● Total likelihood: L = ∏events qj

➢ Find model parameters that maximize L
by minimizing negative log likelihood:

  –ln(L) = –∑events ln(qj) = –∑states pi ln(qi)

➔ Cross-entropy loss function ↔ maximum likelihood fit
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Backpropagation


➔ Derivative of loss function L(o)
with respect to weights?

 Chain rule:

➔ Go backward in net and reuse already calculated values
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Optimizers
● Task: find global minimum of loss function

in model parameter space: L(w) → min

➔ Gradient descent → learning rate η: 
● Learning rate usually decreased
● Exploding gradient problem → gradient clipping
● Vanishing gradient problem → momentum term
● Line search

➔ AdaGrad, RMSProp, Adam: 
dynamic adjustment of algorithm parameters

➔ Newton, BFGS:
step length determined from second derivative
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Model Training
➔ Choice of architecture and training parameters (hyper-

parameters) often based on problem-specific experience
➔ Preprocessing of input variables (features)

→ reasonable range, decorrelation
➔ Model parameter starting values → random, reasonable range

➢ Iterative training process
→ reuse data multiple times (epochs)

➢ Updates with chunks of partial data (mini batches)
→ stochastic learning
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Theorems
Universal Approximation Theorem:
Hornik et al., 1989; Cybenko, 1989

➢ A feed-forward network with linear output and at least one hidden layer 
with a finite number of nodes can approximate any continuous function 
on closed or bound subsets of ℝn to arbitrary precision.

No Free Lunch Theorem:
Wolpert, 1996

➢ Averaged over all possible data-generating distributions, every 
classification algorithm has the same error rate when classifying 
previously unobserved points

➔ No machine learning algorithm is universally any better than any other.
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Generalization
➢ Aim: Minimize loss with respect to true distribution

instead of samples that are drawn from it

➔ Requires
appropriate
capacity
of model

➔ More data
helps

deeplearningbook.org
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Detection of Overfitting

● Test for overfitting 
with independent 
test dataset

→ no overfitting
     if Ltest = Ltrain

● Split in training, validation, and test datasets if hyperparameters 
are tuned

deeplearningbook.org

generalization error



19

Regularization
 Early stopping

 Penalty terms in loss function

 Addition of noise

 Reduction/sharing 
of parameters

 Dropout

deeplearningbook.org
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Representation                                
➔ Domain knowledge
➔ Pre-processing
➔ One-hot encoding for 

unordered categories
➔ Embedding

➔ Representation learning

Mikolov et al (2013)

arXiv:1812.09722

deeplearning boo
k.org
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Deep Learning
➢ Multiple layers (with increasing

level of representation)
➢ High model capacity

● Technological
progress due to
– Powerful hardware
– Huge datasets
– Available tools

deeplearningbook.org



22

Example: AlphaGo
https://deepmind.com/blog/alphago-zero-learning-scratch/#image-477

Reinforcement
Learning



23

Network Architectures
● Pooling
● Softmax

(for multiple classes)

● Convolution
● Recursion
● ...
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Classification Performance
➢ Type I error: false positive

FP rate (FPR) = FP / (TN+FP)
significance α, p-value

➔ Positive predictive value
PPV = TP / (TP+FP)
precision, purity

➢ Type II error: false negative
FN rate (FNR) = FN / (TP+FN)

➔ TPR = TP / (TP+FN) = 1 – FNR
recall, sensitivity, 
power β, efficiency ε 

➢ Accuracy (TP+TN)/(TP+FP+TN+FN)

TPTN

FPFN

acceptH
0
: 

back-
ground

H
1
: 

signal

accepted rejected

signal
True
Positive

False 
Negative

background
False
Positive

True 
Negative

confusion
matrix

hypothesis
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ROC Curve, Cross-Validation

Cross-validation:
● Split dataset in N parts
● Loop i=1...N

– Train model with all 
data except part i

– Validate on part i

● Sum validations on
partial data

Receiver Operator Characteristic (ROC) curve
→ Area Under Curve
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Which Tool?
➔ https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/
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Documentation, Tensorboard
➔ https://www.tensorflow.org/guide/keras
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