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Literature, Material

Deep Learning, Goodfellow et al.
deeplearningbook.org

Deep Learning for Physics Research,
Erdmann et al., deeplearningphysics.org

Introduction to Machine Learning with Python,
https://github.com/amueller/introduction_to_ml_with_python

HSF: Introduction to Machine Learning,
https://hsf-training.github.io/hsf-training-ml-webpage/


https://hsf-training.github.io/hsf-training-ml-webpage/

Human vs. Computer
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Easy for computers,

hard for humans
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Easy for humans,
hard for computers




Neurons

Human: ~10Y neurons with

GPGPU: ~10%* cores ~10“ connections each,
~200 watt ~12 watt .
FPGA: ~107 cells Insects: ~10° neurons with

~10° connections each

> Connectionism: Solving complex problems
by combining many simple, generic elements



Multi Layer Perceptron
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> Each node: x; = fGw;x,), weights w,, activation function f



Activation Functions
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Machine Learning

Task defines desired relation between input and output
Network implements a model

Model is trained on the
experience of a data set

> Supervised with
labeled data

> Unsupervised with
unlabeled data

Choice of model parameters?




Loss Function

Deviation of actual network output o from desired target value t (label)
measured by loss (or error, or cost, or objective) function L for all data points
with index i=1..N

Common loss function for regression:

> Mean squared error (MSE): L = 1/N >, (0, — t)?
Common loss function for classification (with estimated probability gk=ok and
true probability pk=tk, usually O or 1, for class k):

> Cross entropy for m classes: L = =5, >-; » ¥ In(q¥)
> Cross entropy for two classes: L = -3, p; In(q) + (1-p)) In(1-q)

Minimization of loss function — optimization problem



Information Content of Events

* Should be i deeplearningbook.org
higher for less ' |
likely events

e Should add up
for independent
events

Shannon entropy in nats

> Information content of

event with probability p: :
| = —In(p) 0.0 0.2 0.4 0.6 0.8 1.0

= Unit: nat (or nit) for In, bit for log, coin flip probability



v

Cross Entropy

Average information content for a distribution p of events:

Iim”—>°° 1/n Zevents J - _Zstates Pi In(p) = H(p)
Shannon entropy H(p):

> Average number of nats of a message about an event
for optimal encoding for distribution p

Cross entropy for distribution q:

H(p,q) = -3 p:In(q)
=—> p;[In(q) + In(p) — In(p)] = H(P) — > p; In(q/p)

Kullback-Leibler divergence: Dy, (p,q) = -5 p; In(q/p)

> Average additional number of nats needed for a message about an event
for optimal encoding assuming distribution g
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Kullback-Lelbler Divergence

> Measure of difference between distributions
> Minimum of O ifand only ifg=p
* Not symmetric (- not a distance measure)

q" = argmin Dk (p|q) q" = argmin, Dkr.(q||p)

—  p(z) N — p(z)

= - - g*(z) £ , : - - g*(z)
o a
Q Q
=X s
ey =
£ 2
£ L
¢ s
& &

x deeplearningbook.org T



Maximum Likelihood

Probability (density) of single event given by g,
Total likelihood: L = []eyens O

Find model parameters that maximize L
by minimizing negative log likelihood:

—/n(L) — _Zevents /n(CI) = _Zstates Pi /n(ql)

Cross-entropy loss function « maximum likelihood fit
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Backpropagation

FOwiz) = F(, 0l g(3, wf?yj)
_ f( Zw( ) g Zw(y)h ngk )

> Derlvatlve of loss functlon L(0)
with respect to weights?

: _ 8L ! £!
= Chain rule: 8 ) = L f Z;

Ow (y) - L/f/z w( )g,yg

7«7

w(z) _ L/flz w( )glz w(y)h/

> Go backward in net and reuse already calculated values

0
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Optimizers

e Task: find global minimum of loss function
In model parameter space: L(w) - min

> Gradient descent — learning rate n: A& = —n2%&

e Learning rate usually decreased
* Exploding gradient problem - gradient clipping
* Vanishing gradient problem - momentum term AW, = —n% + aAw;

 Line search

> AdaGrad, RMSProp, Adam:
dynamic adjustment of algorithm parameters

> Newton, BFGS:

step length determined from second derivative ”



Model Training

Choice of architecture and training parameters (hyper-
parameters) often based on problem-specific experience

Preprocessing of input variables (features)
- reasonable range, decorrelation

Model parameter starting values — random, reasonable range

lterative training process
- reuse data multiple times (epochs)

Updates with chunks of partial data (mini batches)
- stochastic learning
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Theorems

Universal Approximation Theorem:

Hornik et al., 1989; Cybenko, 1989

- A feed-forward network with linear output and at least one hidden layer
with a finite number of nodes can approximate any continuous function
on closed or bound subsets of Rr to arbitrary precision.

No Free Lunch Theorem:

Wolpert, 1996

> Averaged over all possible data-generating distributions, every
classification algorithm has the same error rate when classifying
previously unobserved points

> No machine learning algorithm is universally any better than any other.
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Generalization

> Aim: Minimize loss with respect to true distribution
Instead of samples that are drawn from it

: Underfitting Appropriate capacity Overfitting

> Requires

appropriate

capacity .

of model =

P s s

> More data o o

helps

deeplearningbook.org




Overfitting

Detection of Overfitting | [ﬂ

deeplearningbook.org

0.20 , , [ ,

#—e Training set loss

* Test for overfitting
with independent
test dataset

0.15 ——  Validation set loss |4

- no overfitting
If Ltest — Ltrain

o
o
S

generalization error

Loss (negative log-likelihood)
o
’_L
o

=

o

&
o'

50 100 150 200 250
Time (epochs)

e Split in training, validation, and test datasets if hyperparameters
are tuned



Regularization

deeplearningbook.org

Base network

of parameters ©

®

o2ly©
CoR,

Dropout

Early stoppin R R R R
y stopping e cllcfc/lic
Penalty terms in loss function o ee@ 09 @ @°®
Addition of noise o*o @ @@ :
> o @
Reduction/sharing o e (=)
@
®
©

Ensemble of subnetworks



Representation

Domain knowledge
Pre-processing

One-hot encoding for
unordered categories

Embedding WOMAN

KING Mikolov et al (2013)

Representation learning

Cartesian coordinates

Polar coordinates

Input vectors Particles

u
W=pu+vy,

Rest frames

W=pt+1/”
t= b+y+1/”

Boosted particles Features

arXiv:1812.09722

B10yo00gbulureajdasp

20



Deep Learning

> Multiple layers (with increasing
level of representation)

> High model capacity

* Technological
progress due to

- Powerful hardware
- Huge datasets
- Avalilable tools

Output
(object identity)

3rd hidden layer
(object parts)

o
- .
b < 2nd hidden layer
j (corners and
' contours)
- 1st hidden layer
. (edges)

Visible layer

deeplearningbook.org (input pixels)
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Power Consumption (TDP)

50000 ~

40000 -

30000 -

20000 -

10000 -

Example: AlphaGo

https://deepmind.com/blog/alphago-zero-learning-scratch/#image-477

Reinforcement

Learning
8§ |
AlphaGo Fan AlphaGo Lee AlphaGo Master AlphaGo Zero
(176 GPUs) (48 TPUs) (4TPUs) (4 TPUs)
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Network Architectures

batch_normalization 2 | BatchiNormalization

puLayer

batch_normalization_6 | BatchNormalization

* Pooling

pre_lu | PRLU

e Softmax

(for multiple classes)
EXP\T; ——

PReLU | | adi_matrix

e |

1

j EXP\L;

e Convolution

simple gen | SimpleGCN

batch_normalization | BatchNormalization

e Recursion

dropout | Dropout

simple gen 1 | SimpleGCN 23




Classification Performance

> Type | error: false positive H,: : [ accept —#
FP rate (FPR) = FP / (TN+FP)  pack- |
significance a, p-value ground :

> Positive predictive value |
PPV = TP / (TP+FP) TN/ TP
precision, purity

> Type Il error: false negative FN  FP
FN rate (FNR) = FN / (TP+FN) confusion hypothesis

> TPR=TP/(TP+FN) =1 - FNR matrix accepted rejected
recall, sensitivity, _ True False
power (3, efficiency € signal Positive Negative

Fal T
-+ Accuracy (TP+TN)/(TP+FP+TN+FN)  background | L0500 | Noc e
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ROC Curve, Cross-Validation

Receiver Operator Characteristic (ROC) curve

_ Area Under Curve Cross-validation:
0.0 AIETOTE / « Split dataset in N parts
;23 * Loop i=1...N
s - Train model with all
S 041 data except part |
"o - Validate on part i
L * Sum validations on

00 01 02 03 04 05 0.6 07 08 009 partia| data

False Positive Rate
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Which Tool?

> https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/

Training industry-ready

Course focus:

Deep Learning theory;
Research preparation

‘ Ideally: both!

T C

Beginner

@

1| |

O
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Documentation, Tensorboard

> https://www.tensorflow.org/guide/keras

TensorBoard SCALARS ~ GRAPHS  DISTRIBUTIONS  HISTOGRAMS  TIME SERIES INACTIVE + | @ upLo D) INCEE « IO

[] show data download links Q Filter tags (regular expressions supported)
Ignore outliers in chart scaling
epoch_loss ~
Tooltip sorting method: default v
epoch_loss
tag: epoch_loss
Smoothing
_— 06 ¢ 18
16
Horizontal Axis
14
STEP RELATIVE WALL
12
)
Runs
Write a regex to filter runs 0
O train 0.6
QO validation 04
TOGGLE ALL RUNS
0.2
logs 2 —9
0 50 100 150 200 250 300 350 400

ra
[
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