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CNNS IN THE PHYSICS DEPARTMENT AT FAU
➤ At FAU (Physics department): 


➤ 1st semester: Datenverarbeitung


➤ Later Wahlfächer like: “Machine learning and data analysis in science” and 
“Machine learning for physicists” 


➤ https://florianmarquardt.github.io/deep_learning_basics_linkmap.html 


➤ Currently no single course in physics focussed on Deep Learning


➤ But of course also courses in other departments (e.g. Data Sciences, …)


➤ What I will describe is one or two lectures on CNNs in the context of the 
above lectures


➤ Will assume that everything about machine learning, ANN, back 
propagation, … has been covered
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https://florianmarquardt.github.io/deep_learning_basics_linkmap.html


GOAL OF THE LECTURE
➤ At the end of this lecture, the students should


➤ Understand the basic building blocks of a convolutional neural network


➤ Understand why CNNs are very powerful in extracting features


➤ Understand how modern CNNs are built


➤ Be able to build their own CNN for a classification task
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REMINDER LAST LECTURE
➤ We introduced fully connected neural 

networks (aka multi-layer perceptrons) for 
2-class and -class classification and 
regression


➤ Learned about weights, learned about 
activation function (e.g. ReLU)


➤ We learned how to train a network for a 
given cost function J, using back 
propagation


➤ Neural networks are prone to overfitting, 
often necessary to include regularization

K
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CNNS IN A NUT-SHELL

➤ Inspired by visual cortex (small region of cells sensitive to specific regions of the visual field)


➤ Some neurons fire when they see vertical edges, others for diagonal ones (e.g. https://
arxiv.org/pdf/1406.3284.pdf)


➤ CNN learns to look features (=values of the filters) on its own through learning


➤ Technically: slide convolution ‘filter’ over input volume


➤ Learning part: determine optimal parameter of filters


➤ Able to derive patterns in a highly-complex input space
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https://arxiv.org/pdf/1406.3284.pdf
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THE CHALLENGE
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THE POWER OF CNNS

➤ Different image - same meaning
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https://image-net.org/about.php
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CNNS ARE EVERYWHERE
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Seismic data

Brain tumor detection

https://www.nature.com/articles/s41598-019-47765-6

Sperm whale click detection

https://www.nature.com/articles/s41598-019-48909-4

Apple’s Siri

https://machinelearning.apple.com/research/hey-siri

https://www.nature.com/articles/s41467-020-17123-6

https://www.nature.com/articles/s41598-019-47765-6
https://www.nature.com/articles/s41598-019-48909-4
https://www.nature.com/articles/s41598-019-48909-4
https://machinelearning.apple.com/research/hey-siri
https://www.nature.com/articles/s41467-020-17123-6
https://www.nature.com/articles/s41467-020-17123-6


OK, let’s get started understanding CNNs



STEPS THAT SHOULD BE COVERED IN A LECTURE ON CNNS
➤ The basic blocks of machine learning and CNNs


1. The core of CNNs: convolution in artificial neural networks


2. Learning in CNNs


3. (Useful tools: Striding, zero padding and pooling)


4. Typical CNN architectures


5. Data augmentation and pre-processing
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1 - THE CORE OF CNNS: THE TECHNICAL DETAILS THAT MATTER

➤ Basic assumption I: input is one or more images (2-dimensional data on a square grid, e.g. RGB)


➤ Basic assumption II: fully connected networks don’t scale well (as the images get larger)
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1 - THE CORE OF CNNS: FULLY CONNECTED NNS DON’T SCALE WELL

➤ Imagine an RGB image 32x32 pixels 
(i.e. 32x32x3=3072 input values)


➤ Imagine a set of six 5x5 filters to learn 
the features of the image. 


➤ Output: 28x28 for each of the six 
filters (=4704 output values). 


➤ Fully connected network: 3072x4704 
= 14M weights.

14

Fully connected NN:

x3x2x1 x4 … xp

z3z2z1 z4 … zml



1 - THE CORE OF CNNS: THE TECHNICAL DETAILS THAT MATTER

➤ Basic assumption I: input is one or more images (2-dimensional data on a square grid, e.g. RGB)


➤ Basic assumption II: fully connected networks don’t scale well (as the images get larger)


➤ Therefore create a network that contains the following features:


➤ Sparse interactions (Kernel much smaller than input). Nodes are connected locally 
(convolution) but not fully connected (exact location of feature in image does not matter)


➤ Parameter sharing (rather than learning a separate set of parameters for every location, only 
one set is learned - the Kernel weights - over the whole image)


➤ Translational equivariance (if we shift the input, we also shift the output)
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1 - THE CORE OF CNNS - SPARSE INTERACTIONS 
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1 - THE CORE OF CNNS: SPARSE INTERACTIONS 
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x3x2x1 x4 x5

z3z2z1 z4 z5

Receptive field 

The receptive field in Convolutional Neural 
Networks (CNN) is the region of the input space 

that affects a particular unit of the network



1 - THE CORE OF CNNS: WEIGHT SHARING
➤ What is important in one 

part of the image, is 
likely also important in 
another part of the image
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1 - THE CORE OF CNNS: WEIGHT SHARING
➤ What is important in one 

part of the image, is 
likely also important in 
another part of the image

18

Fully connected NN: each weight only used once

x3x2x1 x4 … xp

z3z2z1 z4 … zml

CNN: weights shared among neurons

x3x2x1 x4 x5

z3z2z1 z4 z5



1 - THE CORE OF CNNS: SOME NUMBERS (SPARSE INTERACTIONS AND PARAMETER SHARING)

➤ Imagine an RGB image 32x32 pixels 
(i.e. 32x32x3=3072 input values)


➤ Imagine a set of six 5x5 filters to learn 
the features of the image. 


➤ Output: 28x28 for each of the six filters 
(=4704 output values). 


➤ Fully connected network: 3072x4704 = 
14M weights.


➤ For CNN: Each filter has (5x5+1) 
parameters, for the three layers, i.e. 
(5x5+1)x3x6 = 468 weights 
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Fully connected NN:

x3x2x1 x4 … xp

z3z2z1 z4 … zml

CNN:

x3x2x1 x4 x5

z3z2z1 z4 z5



1 - THE CORE OF CNNS: UNDERSTANDING CONVOLUTION - MATHEMATICAL BASICS

• In mathematics, convolution defined as operation                           (  real-valued functions) 


• Convolution is commutative:


 


• In discrete form convolution can be written as:   


• In the CNN: two-dim image  and kernel (or filter) functions , for which a convolution can be written as 


        

 , with  if   outside the image or kernel  

( f * g)(t) = ∫
∞

−∞
f(τ)g(t − τ)dτ f, g

( f * g)(t) = ∫
∞

−∞
f(τ)g(t − τ)dτ, Substitution: x = t − τ,

dx
dτ

= − 1

= − ∫
−∞

∞
f(t − x)g(x)dx = ∫

∞

−∞
g(τ)f(t − τ)dx = (g * f )(t)

( f * g)(n) =
∞

∑
m=−∞

f(m)g(n − m)

I(i, j) K(i, j)

(I * K)(i, j) =
∞

∑
m=−∞

∞

∑
n=−∞

I(m, n)K(i − m, j − n) = (K * I)(i, j) =
∞

∑
m=−∞

∞

∑
n=−∞

I(i − m, j − n)K(m, n)

K(i, j), I(i, j) = 0 i, j
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1 - THE CORE OF CNNS: IMAGE CONVOLUTION EXAMPLE

22

Weights in kernel 
 stay constant as we  

move across the image

No interaction  
between all neurons 

 

1 0 1

0 1 0

1 0 1

Kernel

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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1 - THE CORE OF CNNS: EXAMPLE CONVOLUTION FOR EDGE DETECTION
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1 - THE CORE OF CNNS: EXAMPLE CONVOLUTION FOR EDGE DETECTION
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1 - THE CORE OF CNNS: EXAMPLE CONVOLUTION FOR EDGE DETECTION
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1 - THE CORE OF CNNS: EXAMPLE CONVOLUTION FOR EDGE DETECTION

24

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

× =
0 0 0 0

30 30 30 30

30 30 30 30

0 0 0 0

0 0 0 0

30 10 -10 -30

30 10 -10 -30

0 0 0 0

Horizontal edge detection

1 1 1

0 0 0

-1 -1 -1



1 - THE CORE OF CNNS: EDGE DETECTION AT WORK
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https://en.wikipedia.org/wiki/Edge_detection#/media/File:Ääretuvastuse_näide.png 

https://en.wikipedia.org/wiki/Edge_detection#/media/File:%C3%84%C3%A4retuvastuse_n%C3%A4ide.png


1 - THE CORE OF CNNS: WHY ARE CNNS SO USEFUL?
➤ Reduce number of computations (sparse 

interactions, parameter sharing) and 
memory requirements


➤ Intuitively: CNN will learn filters that 
activate for some kind of feature in the image 
like an edge or blotch of some color; often 
useful to learn that regardless of position in 
image  translational equivariance:


➤ Equivariance not always useful: e.g. when 
different features are present at different 
positions in an image, like a face in the upper 
part. Then don’t use weight sharing

26

https://florianmarquardt.github.io/deep_learning_basics_linkmap.html



Now that we understand the basic mechanics of a 
CNN, how does the learning work?



2 UNDERSTAND LEARNING IN CNNS
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2 UNDERSTAND LEARNING IN CNNS
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2 UNDERSTAND LEARNING IN CNNS: REMEMBER - TRAINING OF WEIGHTS
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https://owncloud.gwdg.de/index.php/s/qetLJgXMW6u3FwC 

I assume this has been 
covered in the general 
introduction to ANNs 
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2 UNDERSTAND LEARNING IN CNNS: REMEMBER - TRAINING OF WEIGHTS
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I assume this has been 
covered in the general 
introduction to ANNs 

https://owncloud.gwdg.de/index.php/s/qetLJgXMW6u3FwC
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2 UNDERSTAND LEARNING IN CNNS

➤
Define a cost function.        


➤ Use gradient descent to derive the set of W, b, for 
which the cost is minimised

J =
1
m

m

∑
i=1

L( ̂y(i), y(i))

31

W, b



Before we can build our CNN, we need three more 
things



3 USEFUL TOOLS - STRIDING, PADDING, POOLING
➤ To reduce computational cost we can shift the kernel 

by more the one pixel, that is, choose a stride 


➤ This is equivalent to a down sampled convolution:





➤ Which comes at the expense that features can not be 
extracted as finely

s > 1

z[l]
i,j,k = c(K, a[l−1], s)i,j,k = ∑

m
∑

n
∑

p

a[l−1]
m,( j−1)×s+n,(k−1)×s+pK[l]

i,m,n,p
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3 USEFUL TOOLS - STRIDING, PADDING, POOLING

34

x3x2x1 x4 x5

s2s1 s3

x3x2x1 x4 x5

z3z2z1 z4 z5

s2s1 s3

=

strided convolution 

Convolution with downsampling



3 USEFUL TOOLS - STRIDING, PADDING, POOLING
➤ If only valid convolutions (=kernel fully contained in image) are considered, image will 

quickly shrink in size

35

Valid convolution: no zero-padding



3 USEFUL TOOLS - STRIDING, PADDING, POOLING
➤ If only valid convolutions (=kernel fully contained in image) are considered, image will 

quickly shrink in size

35

Valid convolution: no zero-padding

Same convolution: zero padding  
so that dimensions don’t change• Padding edges with  

zeros, allows one to make 
arbitrarily deep CNNs


• Avoids some edge effects 

p



3 USEFUL TOOLS - STRIDING, PADDING - OUTPUT SIZE OF CNN
➤ With input of width , and kernel with receptive field of size , stride  and zero 

padding , one output image in the convolutional layer will have width 


 


➤ Strides constrained so that  is an integer


➤ With , zero padding with  will give 

W[l−1] f [l] s[l]

p[l]

W[l] = (W[l−1] − f [l] + 2p[l])/s[l] + 1

W[l]

s[l] = 1 p[l] = ( f [l] − 1)/2 W[l] = W[l−1]

36[On black board]



3 USEFUL TOOLS - STRIDING, PADDING, POOLING - OUTPUT SIZE
➤ With input of width , and kernel with receptive field of size , stride  and 

zero padding , one output image in the convolutional layer will have width 


                 


➤ Strides constrained so that 
 is an integer


➤ With , zero  
padding with  

 will  
give 

w f s
p

w2 = (w − f + 2p)/s + 1

w2

s = 1

p = ( f − 1)/2
w2 = w

37

W[1] = 7
f [2] = 3
p[2] = 0
s[2] = 1

⇒ W[2] =
7 − 3 + 2 ⋅ 0

1
+ 1 = 5

Weights:
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3 USEFUL TOOLS - STRIDING, PADDING, POOLING
➤ Result of convolution passed to non-linear activation function 

(e.g. Rectified Linear Unit RELU)


➤ Result of non-linear activation function usually passed to a 
‘pooling layer’ that reduces spatial size (like a downsampling)


➤ Most common: 2x2 filter with stride 2 that selects the 
maximum of the input fields (MAX pool) 
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POOLING
➤ Helps to make representation invariant against small translations


➤ Invariance to local translations useful if we care more about a feature itself than its 
position in the image 

39

0.210.1 0.1

11 0.21…

… …

…

Pooling Stage (MAXPool)

Detector Stage



POOLING WITH DOWNSAMPLING
➤ Pooling summarizes activations of whole neighborhood


➤ Thus, makes sense to use fewer pooling units than detector units 


➤ Example with stride :s = 2

40

0.210.1 0.1

0.10.21

0. 0.1



OK, so we have the building blocks. Let’s build a 
CNN.





4 TYPICAL CNN ARCHITECTURES: THE FIRST SUCCESSFUL CNN - ALEX NET
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https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/
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4 TYPICAL CNN ARCHITECTURES: THE FIRST SUCCESSFUL CNN - ALEX NET

➤ developed by Alex Krizhevsky, Ilya Sutskever 
and Geoff Hinton. First to popularize CNNs 
for computer vision, won 2012 ImageNet 
contest. Significantly outperformed runner up


➤ First to implement maxpool layers, ReLU 
activation and dropout layers


➤ nowadays can be implemented in 35 lines of 
Torch code


➤ How was the exact configuration chosen? Trial 
and error
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4 TYPICAL CNN ARCHITECTURES

➤ Typical architecture of CNN generally will look like:


 


➤ In general: prefer repeated convolutions with small kernels over one convolution with large 
kernel 


➤ Use zero padding such that convolution does not change spatial dimensions, only use pooling 
for that. Otherwise, you have to make sure that striding works


➤ Fully connected layers to classify based on the high-level features learned in the convolution 
part


➤ Consider re-using pre-trained networks and tweak them for your problem

Input → ((Conv → ReLU) × N → Pooling?) × M → (FC → ReLU) × K → FC

46

Feature extraction Classification



4 TYPICAL CNN ARCHITECTURES: DEVELOPMENT FOLLOWING ALEXNET
➤ Deeper, e.g. Inception (GoogLeNet)

47



FUN EXAMPLE: PLAYING THE ATARI SUITE 

48https://www.nature.com/articles/nature14236 

https://www.nature.com/articles/nature14236


FUN EXAMPLE: PLAYING THE ATARI SUITE 

48https://www.nature.com/articles/nature14236 

https://www.nature.com/articles/nature14236


FUN EXAMPLE: PLAYING THE ATARI SUITE 
➤ https://static-content.springer.com/

esm/
art%3A10.1038%2Fnature14236/
MediaObjects/
41586_2015_BFnature14236_MOES
M124_ESM.mov 

49
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DATA AUGMENTATION
➤ Improve generalization error of classifier by adding copies of data samples that have been 

transformed in such a way that class does not change 
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4 TYPICAL CNN ARCHITECTURES: COULD GO MUCH DEEPER HERE
➤ Degradation problem, batch normalisation, residual 

blocks, ResNet


➤ Dense convolutional networks


➤ Network efficiency, …


➤
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CURRENT EFFORTS TO IMPROVE CNNS
➤ Physics-guided CNNs (provide physics constraints on the network output) - e.g. Zhang et al. 

2020 or Wu et al., 2018


➤ Use physics laws as a guideline for constructing NNs (e.g. Hamiltonian NN)


➤ Letting ML find optimal observables (e.g. Datta et al. 2019)


➤ Improve computational efficiency of CNNs, real-time processing


➤ CNNs on FPGAs (e.g. for L1T at LHC, HLS4ML open source, multi backend)


➤ Network causality - how are decisions taken? (e.g. Kindermans et al. 2017)


➤ Uncertainty quantification (typically with GANs)


➤ Refinement of MC simulations to match data (also with GANs)
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NOW LET’S APPLY IT - TENSORFLOW, OR KERAS
➤ Convenient neural network package 

for python


➤ Set up and training of a network in a 
few lines


➤ Based on underlying neural network 
package (also provides run-time 
compilation to CPU and GPU) either 
tensorflow or theano.
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SUMMARY
➤ Machines exploit physics contained in data deeper than before  

➤ CNNs are the workhorse for many of the more advanced applications, as example in 
investigations of causality, stability, uncertainties 
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