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Starting point: standard network

 Fully-connected networks:
matrix multiplication between layers / bias vectors / nonlinear activation functions
weights and biases are fixed by training
« Input data are processed from left to right (feedforward processing)

network ready for new input after each output, results are not kept

input hidden layers output
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Sequential data and time series

« Many forms of ordered data: time series, words, phrases, nucleobases in DNA...
« Time series important in physics: sensor readings (cf. data streams at CERN)
everyday life: regularly updated weather forecasts
financial data streams
audio + video streams
voice assistants
— time series are paradigm for physics

« Typical feature: variable input (= length of series not fixed, can vary during use)

No fixed input vector - New network design required
standard matrix multiplication | ——— | when dealing with sequences:
not well suited recurrent neural network
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Output (e.g., forecast of the

output layer temperature at time step t+1)

Internal memory (to take into account

hidden layer previous input)

Input (e.g., reading of a temperature

input layer _
sensor at time step t)
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output layer

hidden layer

input layer
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Direction of data processing
from input to output

Timeline
(processing of previous input
kept in internal memory)
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Basic unit of a recurrent network (RNN)

Formal calculation:

output layer yi = g(hy)

Et — f(ftﬁ Et—l)

hidden layer
« Functions f, g, remain the same for the
entire series
» Internal state at time t depends on all
input layer previous inputs:

—

he = f(7¢, Et—l)
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Basic unit of a recurrent network (RNN)

Example:

output layer Ui = 0(Wyy Iy + gy)

Et = tanh (W 7y + Wy ]—?:t_1 T Eh)

hidden layer

input layer

ErUM-Data Hub Workshop
Klemradt | RWTH Aachen | 31.03.22 | Recurrent Neural Networks




Core building block of a RNN

hidden layer

E—=1>—@

input layer

[2,3]
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Unrolling of a RNN

L

>

@—>—®

A A
« Unrolled RNN with similar appearance as conventional feedforward network

» Training through backpropagation through time (BPTT) = usual backpropagation
process for weights and biases adapted to RNN

@
I
A
.

Timeline
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Problem: short-term memory good, but long-term memory fails
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Long short-term memory (LSTM)

Introduced in 1997 by Hochreiter und Schmidhuber

Eliminates sensitivity to gap length between important events of a series
— training becomes possible for much more useful sequence lengths
Game changer for RNNSs: applicable in real-world situations

Until today “gold standard” for recurrent networks

Key features:

Additional internal memory called cell state
Gates that control the cell state actively
Closely controlled update procedure of the internal memories

Gate overview:

Forget gate (= keep gate): decides whether to forget or keep elements stored in the cell
Input gate: decides whether a new value flows into the cell
Output gate: controls whether the updated cell value contributes to the hidden state

ErUM-Data Hub Workshop
Klemradt | RWTH Aachen | 31.03.22 | Recurrent Neural Networks



Long short-term memory (LSTM)

Layer calculations and intermediate vectors:

« Direct update of the hidden state ﬁt replaced by a complex interaction of four
intermediate vectors at each time step t (for simplicity here in 1D):

forget layer : Jt=0Wexy +Uphi_1 + by)
input layer : 1t =0 (Wixe +U; hy_1 + b;)
output layer : op=0(W,xs +U,hi_1 +b,)
cell input layer : C; = tanh (Weay +Ushi—q + be)

Updates from intermediate vectors:

- Cell state C; Example

. Complete reset of cell state
« Hidden state h; U

Ce=ft - Cir +ip - Gy hy = 04 - tanh (C})
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Long short-term memory (LSTM)

Graphical representation of the update process:

Standard RNN cell LSTM cell
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Et = tanh (W, 7 + Wy, Et—l + gh)
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Long short-term memory (LSTM)

LSTM walk-through: setup of intermediate variables

forget layer : fi=0Wrx,+Ufhy_q +by)
input layer : it =0 (Wixy +U; hy—1 + b;)
i Cy = tanh (W, 2y + Up hy_q + be)
|

by
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Long short-term memory (LSTM)

LSTM walk-through: cell and hidden state updates
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Ci=Jft - Ci1+ 1 - Cy

hy = o; - tanh (C})

op =0 (W,x, +U,hi_1+b,)

| Recurrent Neural Networks




Gated recurrent unit (GRU)

* Introduced in 2014 by Cho et al.
« Aim: simplification of the complicated LSTM update procedure
« Growing popularity in applications, needs less resources

Key features:
* No cell state
* Only two gates

Gate overview:
* Reset gate: decides whether to reset the hidden state
« Update gate: decides whether to update the hidden state
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Gated recurrent unit (GRU)

GRU hidden state update

fe—1
reset layer : re =0 (Wray +Uphi_1 +0;)
update layer : zp=0W,as +U, he_y1 +b,)
candidate layer : h; = tanh (Whae +Up (1 - he—1) + bn)
[3] h-t = (1 — Zt) . ht—l + Z¢ - h—t
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Applications In current technology

Variants of sequence processing

output layer (jj) (::) .ijjj
hidden layer (ji}——a(ji}——a{:ij

input layer

(a) Many-to-many (synced)
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NN RN

output layer

hidden layer (ﬁ:}——ﬁ: (:2}
input layer (::}

(c) One-to-many
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(d) Many-to-one
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Application examples:

(a) Temperature forecast
(b) Automatic translation
(c) Image captioning
(d) Text classification
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Application example in physics

MNuclear Inst. and Methods in Physics Research, A 867 (2017) 40-50

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

ELSEVIER journal homepage: www.elsevier.com/locate/nima

Using LSTM recurrent neural networks for monitoring the LHC @Cmmk
superconducting magnets

Maciej Wielgosz ®*, Andrzej Skoczen ¢, Matej Mertik ¢ _

2 Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Krakdw, Poland WIG'QOSZ et al -y NUCI . |nSt Meth . A, 867, 40 (201 7)
b Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakdw, Poland
© The European Organization for Nuclear Research — CERN, CH-1211 Geneva 23, Switzerland

4 Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia

ARTICLE INFDO ABSTRACT
Keywords: The superconducting LHC magnets are coupled with an electronic monitoring system which records and analyzes
LHC

voltage time series reflecting their performance. A currently used system is based on a range of preprogrammed

Recurrent neural networks triggers which launches protection procedures when a misbehavior of the magnets is detected. All the procedures
lSTMI . used in the protection equipment were designed and implemented according to known working scenarios of the
Deep leaming

Modeling system and are updated and monitored by human operators.

This paper proposes a novel approach to monitoring and fault protection of the Large Hadron Collider (LHC)
superconducting magnets which employs state-of-the-art Deep Learning algorithms. Consequently, the authors
of the paper decided to examine the performance of LSTM recurrent neural networks for modeling of voltage
time series of the magnets. In order to address this challenging task different network architectures and hyper-
parameters were used to achieve the best possible performance of the solution. The regression results were
measured in terms of RMSE for different number of future steps and history length taken into account for the

1 7 prediction. The best result of RMSE = 0.00104 was obtained for a network of 128 LSTM cells within the internal
layer and 16 steps history buffer.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license



https://www.sciencedirect.com/science/article/pii/S016890021730668X

Application example in physics

Wielgosz et al., Nucl. Inst. Meth. A, 867, 40 (2017)

» Superconducting magnet quench sets free huge energies
* Quenches occur regularly for many reasons
frequently: release of local mechanical stress, e.g. from assembly
» Electronic monitoring for quench protection exists
» Voltage-time series for each magnet logged, time resolution 400 ms
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Fig. 8. The selected sample anomalies of 600 A magnets extracted from the LS database.
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Application example in physics

Wielgosz et al., Nucl. Inst. Meth. A, 867, 40 (2017)

Available data sets:
« 600 A magnet: 425 quench events between 2008 and 2016
« time window of 24 hours before quench selected for training

< own

Custom-design RNNSs of various architectures trained

. o 0
data split: 70% training, 30% testing
Table 5
The parameters of the LSTM network used to the experiments.
Parameter Value
Number of layers 5
Number of epochs &
Total number of the network parameters 21025
Dropout 0.2
Max. number of steps ahead 32

Input — 1:32 stepD

Fig. 10. The LSTM-based network used for the experiments.

ErUM-Data Hub Workshop

173 Klemradt | RWTH Aachen | 31.03.22 | Recurrent Neural Networks



https://www.sciencedirect.com/science/article/pii/S016890021730668X

Application example in physics

Wielgosz et al., Nucl. Inst. Meth. A, 867, 40 (2017)
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Fig. 11. Two examples of prediction for one and two steps ahead in time. Predicted signal is plotted in a green broken line.

« Voltage-time series of magnets can be modeled by RNNs

« Prediction quality drops significantly with number of steps ahead
* Real time monitoring using RNNs?

Table 6

Performance of various approaches to LSTM hardware implementation (data from [45-47]).

80

Setup

Platform

Computation time [ps]

2 layers (128 cells), 32/16 bit
Compressed LSTM (20x), 1024 cells
2 layers (30, 256 cells), 6-bit quantization

Xilinx Zynq 7020 (142 MHz), external memory — DDR3

Xilinx XCKU060 Kintex (200MHz), external memory — DDR3

Xilinx Zynq XC7Z045 (100 MHz) 218 MB on-<chip memaory max, all in the
internal memory

~832
827
15.96
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RNNs in Keras

Basic usage, see https://keras.io/layers/recurrent/
from keras.layers import SimpleRNN, LSTM, GRU, Input
z0 = Input(shape=(100, 5)) # input: sequence of 100 steps, holding 5 features each
z = SimpleRNN(16, activation="tanh')(z0)

z = LSTMI(16, activation='tanh', recurrent_activation="hard_sigmoid')(z0)
z = GRU(16, activation="tanh’, recurrent_activation="hard_sigmoid')(z0)

Usually CuDNN implementation is used (depending on your settings and hardware)
Common parameters with defaults:

* return_sequences=False - If True, return full sequences of states

* go_backwards=False - If True, RNN operates from back to front

* stateful=False - If True, reuse last states for each sample from previous batch

* unroll=False - Unroll graph: faster, but memory intensive (short sequences only!)
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Introduction to (autoregressive) recurrent
neural networks

In this example, we will introduce recurrent neural
networks (RNNs) and implement them using keras. The
aim is to train a network to predict the periodicity of a sine
wave using the autoregressive characteristic of RNNs.

Open example

Cosmic-ray detection using recurrent
networks

In this example, we will exploit RNNs in the context of
sequence classification. Therefore, we use a simulation
of cosmic-ray-induced air shower signals measured by
radion antennas. The task is to design an RNN that can
identify if the measured signal traces (shortened to 500

time steps) contains a signal or not.
Open example

| Recurrent Neural Networks



Exercises walkthrough
http://deeplearningphysics.org/

Exercise 1: Sinus forecasting

In this task, we will learn to implement RNNs in Keras. Therefore:

« Run the provided script and comment on the output.
« Vary the number and size of the LSTM layers and compare training time and stability of the performance.

In [13]:  import numpy as np
import matplotlib.pyplot as plt
from tensorflow import keras
layers = keras.layers

print(keras. wversion_ )

2.4.0
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Exercises walkthrough
http://deeplearningphysics.org/

ExerCise 1 - Generation of data

We start by creating a signal trace: t = @-180 , ¥ = sin(pi * t)

In [2]: N = 10000
t = np.linspace(@, 100, N) # time steps
f = np.sin(np.pi * t) # signal

Split into semi-redundant sub-sequences of length = window size + 1 and perform shuffle

In [3]: window size = 20
n =N - window size - 1 # number of possible splits
data = np.stack([f[1i: 1 + window size + 1] for i in range(n)])

Finally, split the data into features

In [4]: X, y = np.split(data, [-1], axis=1)
X =X[..., np.newaxis]

print('Example:")
print('x =", X[e, :, @])
print('y =*, y[o, :1)
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Exercises walkthrough
http://deeplearningphysics.org/

Exercise 1: Define and train RNN

In [5]: z@ = layers.Input(shape=[None, 1])
z = layers.LSTM(16)(z08)
z = layers.Dense(1)(z)
model = keras.models.Model(inputs=z@, outputs=z)
print(model. summary())

model.compile(loss="mse’, optimizer="adam")

Model: "model”

Layer (type) Output Shape Param #
input_1 (Inputiayer) [(one, None, D] o
lstm (LSTM) (None, 16) 1152
dense (Dense) (None, 1) 17

Total params: 1,169
Trainable params: 1,169
Non-trainable params: @

MNone
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Exercises walkthrough
http://deeplearningphysics.org/

Exercise 1: In [6]: results = model.fit(X, vy,

epochs=60,

batch_size=32,

verbose=2,

validation split=e.1,

callbacks=[
keras.callbacks.ReducelLROnPlateau(factor=0.67, patience=3, verbose=1, min_Ir=1E-5),
keras.callbacks.EarlyStopping(patience=4, verbose=1)])

— frain
val
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Exercises walkthrough
http://deeplearningphysics.org/

= . In [9]: def plot prediction(ie=e, k=50@):
ExerC|se 1 . """ predict and plot the next k steps for an input starting at i@ """

yo = f[ie: i0 + window_size] # starting window (input)
yl = predict_next_k(model, ye, k) # predict next k steps
te = t[ie: i@ + window_size]

t1 = t[ie + window size: i@ + window_size + k]

plt.figure(figsize=(12, 4))

plt.plot(t, f, label="data")

plt.plot(te, yo, color="C1', 1lw=3, label="prediction')
plt.plot(t1, y1, color="C1', ls='--")

plt.xlim(o, 10)

plt.legend()

plt.xlabel("$t$")

plt.ylabel("$f(t)3%")

In [1@]: plot prediction(12)

100 — data
075 e prediction
0.50
0.25
0.00 \
-0.25
-0.50 \
-0.75
-1.00
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Exercises walkthrough

http://deeplearningphysics.org/

Exercise 2:

. Based on https://arxiv.org/abs/1901.04079
Exercise 9.2

Large arrays of radio antennas can be used to measure cosmic rays by recording the electromagnetic radiation generated in the atmosphere. These radio signals
are strongly contaminated by galactic noise as well as signals from human origin. Since these signals appear to be similar to the background, the discovery of
cosmic-ray events can be challenging.

Identification of signals
In this exercise, we design an RNN to classify if the recorded radio signals contain a cosmic-ray event or only noise.

The signal-to-noise ratio (SNR) of a measured trace S(¢) is defined as follows:

_ S )y
T RS

where §<%(¢) . denotes the maximum amplitude of the (true) signal.
Typical cosmic-ray observatories enable a precise reconstruction at an SNR of roughly 3.

We choose a challenging setup in this task and try to identify cosmic-ray events in signal traces with an SNR of 2.
Training RNNs can be computationally demanding, thus, we recommend to use a GPU for this task.

import tensorflow as tf

from tensorflow import keras
import numpy as np

import matplotlib.pyplot as plt

layers = keras.layers
print("keras", keras. version_ )

keras 2.4.8



Exercises walkthrough
http://deeplearningphysics.org/

Exe rcise 2: Plot example signal traces

Left: signal trace containing a cosmic-ray event. The underlying cosmic-ray signal is shown in red, the backgrounds + signal is shown in blue. Right: background
noise.

In [3]: from matplotlib import pyplot as plt
fs = 188e6 # Sampling frequency of antenna setup 189 MHz
t = np.arange(5@@) / fs * le6
idx = np.random.randint(e, labels.sum()-1)
idx2 = np.random.randint(@, n_train - labels.sum())

plt.figure(1, (12, 4))

plt.subplot(1, 2, 1)

plt.plot(t, np.real(f["traces”][labels.astype(bool)][idx]), linewidth = 1, color="b", label-="Measured trace")
plt.plot(t, np.real(signals[labels.astype(bool)][idx]), linewidth = 1, celor="r", label="CR signal")
plt.ylabel( 'Amplitude / mvV')

plt.xlabel('Time / $\mu ‘\mathrm{s}$')

plt.legend()

plt.title("Cosmic-ray event")

plt.subplot(1, 2, 2)

plt.plot(t, np.real(x_train[~y train.astype(bool)][idx2]), linewidth = 1, color="b", label="Measured trace")
plt.ylabel( 'Amplitude / mV')

plt.xlabel( 'Time / $\mu ‘\mathrm{s}$')

plt.legend()

plt.title("Noise event™)

plt.grid(True)
plt.tight_layout()

Cosmic-ray event Noise event
03 —— Measured trace —— Measured trace
—— CR signal 02
02
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Exercises walkthrough

http://deeplearningphysics.org/

Exercise 2:

In

In

In

In

Define RNN model

In the following, design a cosmic-ray model to identify cosmic-ray events using an RNN-based classifier.

model = keras.models.Sequential()
model.add(...)

model. summary ()

Pre-processing of data and RNN training

sigma = x_train.std()
x_train /= sigma
x_test /= sigma

model.compile(...)

results = model.fit(x train[...,np.newaxis], y train, ...)

model.evaluate(x_test[...,np.newaxis], y_test)
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