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Starting point: standard network
• Fully-connected networks: 

matrix multiplication between layers / bias vectors / nonlinear activation functions
weights and biases are fixed by training

• Input data are processed from left to right (feedforward processing)
network ready for new input after each output, results are not kept

[1,2]
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Sequential data and time series
• Many forms of ordered data: time series, words, phrases, nucleobases in DNA…
• Time series important in physics: sensor readings (cf. data streams at CERN)

everyday life: regularly updated weather forecasts
financial data streams
audio + video streams
voice assistants

→ time series are paradigm for physics
• Typical feature: variable input (= length of series not fixed, can vary during use)

No fixed input vector -
standard matrix multiplication
not well suited

New network design required
when dealing with sequences: 
recurrent neural network
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Basic unit of a recurrent network (RNN)

Input (e.g., reading of a temperature
sensor at time step t)

Internal memory (to take into account
previous input)

Output (e.g., forecast of the
temperature at time step t+1)

[2]
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Basic unit of a recurrent network (RNN)

Direction of data processing
from input to output

Timeline 
(processing of previous input
kept in internal memory)
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Basic unit of a recurrent network (RNN)
Formal calculation:             

• Functions f, g, remain the same for the
entire series

• Internal state at time t depends on all
previous inputs:       



| Recurrent Neural Networks
ErUM-Data Hub Workshop
Klemradt | RWTH Aachen | 31.03.22

6

Basic unit of a recurrent network (RNN)
Example:             
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Core building block of a RNN

[2,3]
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Unrolling of a RNN

Timeline
• Unrolled RNN with similar appearance as conventional feedforward network
• Training through backpropagation through time (BPTT) = usual backpropagation

process for weights and biases adapted to RNN
Problem: short-term memory good, but long-term memory fails

[3]
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Long short-term memory (LSTM)
• Introduced in 1997 by Hochreiter und Schmidhuber
• Eliminates sensitivity to gap length between important events of a series

→ training becomes possible for much more useful sequence lengths
• Game changer for RNNs: applicable in real-world situations
• Until today “gold standard“ for recurrent networks

Key features:
• Additional internal memory called cell state
• Gates that control the cell state actively
• Closely controlled update procedure of the internal memories

Gate overview:
• Forget gate (= keep gate): decides whether to forget or keep elements stored in the cell
• Input gate:  decides whether a new value flows into the cell
• Output gate: controls whether the updated cell value contributes to the hidden state
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Long short-term memory (LSTM)

Layer calculations and intermediate vectors:
• Direct update of the hidden state ℎ𝑡𝑡 replaced by a complex interaction of four

intermediate vectors at each time step t (for simplicity here in 1D):

Updates from intermediate vectors:
• Cell state 𝐶𝐶𝑡𝑡
• Hidden state ℎ𝑡𝑡

Example
Complete reset of cell state
→ ft = 0
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Long short-term memory (LSTM)
Graphical representation of the update process:

[3]
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Long short-term memory (LSTM)
LSTM walk-through: setup of intermediate variables
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Long short-term memory (LSTM)
LSTM walk-through: cell and hidden state updates
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Gated recurrent unit (GRU)
• Introduced in 2014 by Cho et al.
• Aim: simplification of the complicated LSTM update procedure
• Growing popularity in applications, needs less resources

Key features:
• No cell state
• Only two gates

Gate overview:
• Reset gate: decides whether to reset the hidden state
• Update gate: decides whether to update the hidden state
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Gated recurrent unit (GRU)
GRU hidden state update

[3]
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Applications in current technology 
Variants of sequence processing

Application examples:

(a) Temperature forecast
(b) Automatic translation
(c) Image captioning
(d) Text classification

[2]
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Application example in physics

Wielgosz et al., Nucl. Inst. Meth. A, 867, 40 (2017) 

https://www.sciencedirect.com/science/article/pii/S016890021730668X
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Application example in physics
Wielgosz et al., Nucl. Inst. Meth. A, 867, 40 (2017) 

• Superconducting magnet quench sets free huge energies
• Quenches occur regularly for many reasons

frequently: release of local mechanical stress, e.g. from assembly
• Electronic monitoring for quench protection exists
• Voltage-time series for each magnet logged, time resolution 400 ms

Quench unfolds gradually in time: 
→ precursors herald instability

→ RNN training opportunity

https://www.sciencedirect.com/science/article/pii/S016890021730668X
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Application example in physics
Wielgosz et al., Nucl. Inst. Meth. A, 867, 40 (2017) 

Available data sets:
• 600 A magnet: 425 quench events between 2008 and 2016
• time window of 24 hours before quench selected for training

Custom-design RNNs of various architectures trained
data split: 70% training, 30% testing

https://www.sciencedirect.com/science/article/pii/S016890021730668X
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Application example in physics
Wielgosz et al., Nucl. Inst. Meth. A, 867, 40 (2017) 

Results:

• Voltage-time series of magnets can be modeled by RNNs
• Prediction quality drops significantly with number of steps ahead
• Real time monitoring using RNNs?

https://www.sciencedirect.com/science/article/pii/S016890021730668X
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VISPA Examples:

Exercise 1:

Exercise 2:
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Exercises walkthrough

Exercise 1:

http://deeplearningphysics.org/



| Recurrent Neural Networks
ErUM-Data Hub Workshop
Klemradt | RWTH Aachen | 31.03.22

22

Exercises walkthrough

Exercise 1:

http://deeplearningphysics.org/
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Exercises walkthrough

Exercise 1:

http://deeplearningphysics.org/
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Exercises walkthrough

Exercise 1:

http://deeplearningphysics.org/
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Exercises walkthrough

Exercise 1:

http://deeplearningphysics.org/
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Exercises walkthrough

Exercise 2:

http://deeplearningphysics.org/
Based on https://arxiv.org/abs/1901.04079
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Exercises walkthrough

Exercise 2:

http://deeplearningphysics.org/
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Exercises walkthrough

Exercise 2:

http://deeplearningphysics.org/
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