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Structure
● Example lecture

 introduction to interpretability
(field is large and developing fast)

● Milestone slides:
 pedagogical reasoning (and important points)

Feel free to ask questions 
during the seminar!
Just raise your hand...
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Interpretability

Deep models have thousands of parameters → open black box
● “What is the model learning?”

➔ learn from trained model
● “Can we trust the model? Does the model work as expected?”

➔ model verification
→ systematic studies (strongly application dependent) 

 

➔ Interpretability
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Interpretability

Predictions

DataModel

ArXiv/1602.04938

low-level
features

mid-level
features

high-level
features

outputinput

“Which part of the data is most useful?”

“Why is the model predicting a certain class / value?”

“How is the model working / are features formed?”
“How do DNNs see the world?
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Milestones: interpretability

   Introduce general concept of network introspection and interpretability

✔ Interpretability of machine learning models involves:

✔ understanding the model

✔ understanding predictions

✔ understanding the data

→ They are strongly related

✔ Neural networks are not black boxes → but challenging to interpret

✔ propagate signals backwards, they are differentiable (no sampling needed!)

✔ Even DNNs are randomly initialized they are sensitive to similar features
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Feature Visualization
Model Interpretability

low-level
features

mid-level
features

high-level
features

outputinput

“How is the model working / are features formed?”
“How do DNNs see the world?
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Visualization of an MNIST CNN

Visualization of activations
● Propagation of input through model
● Later activations hard to interpret

Visualization of first layer filters
● Edge detection 
● Focus on structures in the center

 James Hays - http://cs.brown.edu/courses/cs143/2017_Spring/proj6a/

Layer 1

Layer 2

Layer 3

input

Arthur Juliani - Visualizing Neural Network Layer Activation (Tensorflow Tutorial), Medium

https://medium.com/@awjuliani?source=post_header_lockup
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Transposed Convolution (‘Deconvolution’)

Paul-Louis Pröve, 
Towards Data Science

What input patterns caused a given activation?
➢ Visualize intermediate feature layers

Idea: Map activations back to input space
● Use transposed convolution layer to “invert” 

convolutions (approximately)
● Mapping from feature space → input space

✔ Use highest activation in specific feature map
✔ Transpose weight matrix of trained model to invert 

mapping
✔ Use ReLU after filtering

Example
Transposed convolution, fractionally 
strided convolution or ‘deconvolution’
no padding, stride 2, kernel 3 x 3
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Deconvolutional Network (DeconvNet)

feature 
maps

feature 
maps

feature 
maps

input

0 0 0 0 0 0

transposed 
convolutions

transposed
convolutions

input

take highest activation of a 
feature map and feed it into 
the
‘reversed’ model

map 
activation 
back to input 
space 

DeconvNet Trained model
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Visualization using DeconvNet

Visualized feature

Cut-outs of samples which 
create high activation in the 
specific feature map

Visualized feature Zeiler, Fergus: Visualizing and Understanding Convolutional Networks

Cut-outs of samples which create high 
activation in the specific feature map
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Visualization using DeconvNet

● Layer representation show feature hierarchy → features become more complex
➢ Feature semantic becomes more specific (separation more class specific)

Zeiler, Fergus: Visualizing and Understanding Convolutional Networks

Visualized feature Visualized featureSample cut-out Sample cut-out
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Activation maximization

Idea:
● Construct pattern which maximizes the activation of 

a specific feature map
●

● Model      pre-trained, weights    fixed

● Find

●

● Start from noise
➔ perform gradient ascent

Feature maps

Feature maps

Feature maps

input

Gradient update
 → change x

noise
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Activation Maximization

neuron channel
layer

(deep dream)

... ... ...

objective

obtained
visualizations
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Summary feature visualization
● Approach to gain understanding of trained model → introspection of features
● Tracking signal propagation through model not comprehensible for humans

➔ more sophisticated approaches needed for interpretation 
● Local understanding of the model:

 introspect model around given sample (DeconvNet)
● Towards global model understanding:

 search/generate pattern that maximize feature response using
differentiable of neural networks

● Visualization confirms hypothesis of feature hierarchy, DNNs learn:
 decomposition of input space into modular hierarchical structure
 probabilistic mapping between high-level features
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Milestones: model visualization

   Understanding the building blocks of CNNs → ‘What is a feature?’

✔ No visualization of model, but to what it is sensitive to

✔ Deep learning is form of representation learning

→ nodes, feature maps, and layers dispose distinct abstraction level

→ visualization of CNNs confirms hierarchy of features

✔ DNNs don’t think! If CNNs work similarly to human visual cortex is under debate 

✔ Challenge: interplay of nodes, feature maps, layers

✔ Several methods available (global and local):

✔ propagation-based (DeconvNet)

✔ gradient-based (activation maximization) / gradient estimate w.r.t. input
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Analysis of predictions
 & feature attribution

Predictions

arXiv:1602.04938

“Why is my model predicting a certain class / value?”

“What influences the model’s reasoning most?”
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● Class activation map (CAM) indicates how the output of the last CNN layer is 
used for classification

● Generated by scaling of feature maps and up-sampling (interpolation)
➢ Limited to particular architecture (GAP, single fully-connected layer)

...

conv. conv. conv. global average-poolinginput output

up-scaling
& overlay
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Discriminative Localization

saved activations 
(forward pass)
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Semantic Misinterpretation

Bach et. Al. - Analyzing Classifiers: Fisher Vectors and Deep Neural Networks, arXiv:1512.00172

arXiv:1602.04938

How important is the context?
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Saliency Maps

Idea:
 “What influences the class score at most?”
➔ Important pixels have large gradients
➢ Fix network parameters
➢ Rank pixel importance of input space

● DNN         outputs score           for image
● Compute 1st order Taylor expansion

● Resulting map of gradients:

Map has dimension of input image

feature
maps

input space

picture

class scores

Calculate gradient 
of class score with 
respect to input

feature
maps

feature
maps

softmax
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Saliency Maps MNIST

● Negative gradient: intensity increase of respective pixel → reduce class score
● Positive gradient: intensity increase of respective pixel→ raise class score
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Prediction analysis

Sensitivity analyses (saliency maps ArXiv/1312.6034)
● Study to what the DNN is sensitive to
● Fast and versatile approach
● Limited expressiveness

 does not explain prediction itself but
rather how it will it may change

 locally estimated gradients are noisy

 
 

● Related (advanced) approaches: SmoothGrad, Integrated gradients

investigate
local gradient
/ propagate

score to input

https://doi.org/10.1142/12294 

arXiv:1706.03825

https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1706.03825
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Prediction analysis

Instead of studiying sensitivity, investigate how predictions are formed

Attribution analyses
● Fulfill completeness:

● Sum over all input relevances = prediction
➔ ranks input by it attribution to the prediction

● Common methods:
 Layer-wise relevance propagation, IntegratedGradients, DeepLIFT

relevance/attributionsum runs over all inputs

prediction
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Layer-wise relevance propagation (LRP)
● Re-distribute activation to input
● Designed for DNNs with ReLU activation

● ε-LRP: propagation rule for ReLU networks

 
● ε controls re-distribution (numerical stability)

 small: high sensitivity, tend do be noisy
 larger: less noisy, sparser, absorb weak relevances

forward pass

layer-wise relevance propagation

activations determined in forward pass
obtained relevance

bias
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DEMO - Handwriting

https://lrpserver.hhi.fraunhofer.de/handwriting-classification

https://lrpserver.hhi.fraunhofer.de/handwriting-classification
https://lrpserver.hhi.fraunhofer.de/handwriting-classification
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Summary Prediction Analysis

Interpretation of model predictions – “What causes the certain prediction?
 

Sensitivity analysis –  “To which input my prediction is most sensitive?”
● Investigate sensitivity of the model locally around given input

e.g., saliency maps (gradient-based)
● Describe sensitivity and not predictions itself

 

Attribution analyses – “Which input contributed how much to the output?”
● Completeness criterion (attributions sum up to prediction)
● Study input relevances to the prediction

e.g., LRP, IntergratedGradients, DeepLift, Discriminative Localization
 

Perturbation-based
● Perform perturbations of the input
● Costly, meaningful baseline important
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Milestones: prediction analysis

  Understanding the predictions of deep neural networks

✔ Verification of model, understanding the algorithm

✔ Learn about the data (important inputs, selection of features, segmentation)

✔ Interpretation approaches

✔ sensitivity analyses (to which input my prediction is most sensitive)

✔ attribution analysis (which input contributes how much to the prediction)
 fulfill completeness, more sophisticated approaches

✔ Popular classes of techniques:

✔ propagation-based, perturbation-based, gradient-based
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Questions
● DeconvNet: “Why are the images becoming larger when going deeper?”

 Increasing receptive field of view

● Discriminative localization: “Why the network is limited to a single FC layer?”
 Inversion of non-linearity (to increase network capability by adding a layer) 

needed to be considered

● Code: “What causes the black visualized features maps?”
 ReLU non-linearity, dying ReLU (no gradient for negative values)

● Activation Maximization: “Why is maximization more common then minimization?”
 For DNNs with ReLUs, negative activations are cut away
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Summary: understanding deep networks

Feature visualization
● understanding the model & building blocks – “What is learned by the network?” 

Prediction analysis
● interpret a prediction – “Why a specific pattern caused a certain reconstruction”

Introspection techniques are similar and can generally applied vice versa

(applied at output vs. applied at feature level)
 

Fast growing field of research
➔ study your network using a collection of techniques
● understand your model, debug your architectures

 

➢ Software libraries: iNNvestigate, DeepExplain, Captum
 

!Warning: Be cautious to disentangle observations and human implications!

https://github.com/albermax/innvestigate
https://github.com/marcoancona/DeepExplain
https://captum.ai/
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Milestones (general)

✔ Neural networks are not black boxes → but challenging to interpret

✔ Interpretability involves data, model, predictions

✔ Diverse methods for network introspection exist (examine various aspects)

✔ Introduced techniques in feature and prediction analyses are strongly related 

✔ for model visualization (application at feature level: node, feature map, layer)

✔ for prediction analyses (application at output / class score (before softmax) )

✔ Introspection possible for various architecture (CNNs particular simple)

✔ Interpretation involves humans (possible bias)
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Structure of the lecture

  General: Top down approach (features → output)
 start with visualization of features, then investigate predictions
 include 3 multimedia breaks (one after each block) to let the audience wake up

   (in principle easy to switch order by interpreting output as feature)
 

● Simple to more complex
 Visualization: plot filters→ DeconvNet → activation maximization
 Predictions: discriminative localization→ saliency maps→ LRP

                    sensitivity → attribution
 

● Tutorial:
 one example for each part
 hard to find easy examples (implementation is relatively complex)
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Multimedia resources
● Feature Visualization

 MNIST foward CNN: https://www.cs.ryerson.ca/~aharley/vis/conv/flat.html
 Visualization of Features: https://distill.pub/2017/feature-visualization/
 Model Collection with Visualization: https://microscope.openai.com/models

● Prediction Analyses
 LRP MNIST: https://lrpserver.hhi.fraunhofer.de/handwriting-classification
 Baselines IntergratedGradients: https://distill.pub/2020/attribution-baselines/

https://www.cs.ryerson.ca/~aharley/vis/conv/flat.html
https://distill.pub/2017/feature-visualization/
https://microscope.openai.com/models
https://lrpserver.hhi.fraunhofer.de/handwriting-classification
https://distill.pub/2020/attribution-baselines/
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Tutorial
● Open tutorial page

https://github.com/jglombitza/Introspection_tutorial
● open Colab link and login with your Google Account

● Exercise 1: model introspection
 model visualization using activation maximization

 

● Exercise 2: introspection of predictions
 implement discriminative localization

https://github.com/jglombitza/Introspection_tutorial
https://colab.research.google.com/github/jglombitza/Introspection_tutorial/blob/main/discriminative_localization.ipynb
https://colab.research.google.com/github/jglombitza/Introspection_tutorial/blob/main/activation_maximization.ipynb
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Task 1 – Code
model = models.load_model("./my_mnist_model.h5")
layer_names = ['conv2d_1', 'conv2d_2', 'conv2d_3', 'conv2d_4']

for layer_name in layer_names:
    layer_output = layer_dict[layer_name].output
    sub_model = models.Model([model.inputs], [layer_dict[layer_name].output])

    for filter_index in range(layer_output.shape[-1]):
        input_img = keras.backend.variable(np.random.uniform(0,1, (1, 28, 28, 1)))

        for i in range(gradient_updates):
            
            with tf.GradientTape() as gtape:
                layer_out = sub_model(input_img)
                loss = keras.backend.mean(layer_out[..., filter_index])
                grads = gtape.gradient(loss, input_img)
                input_img.assign_add(step_size * normalize(grads))
        visualized_filter = deprocess_image(input_img.numpy())) # cast to numpy array
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Task 1 – Results

Layer 1

Layer 2
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Task 1 – Results

Layer 3 Layer 4
dead nodes caused by ReLU
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Task 2 – Code
● Which spatial regions lead to the network’s decision?

I. Use padding to maintain spatial information

II.Use global pooling to collapse the spatial dimensions → probabilistic mapping
➢ Look how the last convolutional layer output is used for the decision
    model = models.Sequential([InputLayer(input_shape=(32, 32, 1)),

        layers.Conv2D(8, (3, 3), padding='same', activation='relu'),   # (32, 32, 8)

        layers.MaxPooling2D((2, 2)),                                                    # (16, 16, 8)

        layers.Conv2D(16, (3, 3), padding='same', activation='relu'), # (16, 16, 16)

        layers.Conv2D(32, (3, 3), padding='same', activation='relu'), # (16, 16, 32)

        layers.Dropout(0.25),

        layers.GlobalAveragePooling2D(),                                            # (1, 1, 32)

        layers.Dense(2, activation='softmax')])

    F = ...  # output of last conv layer

    W, b = model.layers[7].get_weights()  # weights of final dense layer

    M = np.einsum('ixyz,zc->ixyc', F, W) + b  # class activation maps



Jonas Glombitza

RWTH Aachen

– BACKUP –
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11 1

11 1

11 1

11 1

11 1

11 1

22 2

22 2

22 2

Transposed convolution
strides = (2, 2)
no zero padding

input
image

11 1

11 1

11 1

filter

outputinput
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GradCAM and CAM

● Discriminative localization with CAMs requires global average pooling layer
 enables to stack feature maps and scale with weights of the final layer
 breaks for more complex architectures (e.g., by adding a fully-connected layer)

➔ Fuse technique with gradient-based sensitivity analyses
 propagated gradients to first CNN layers and built GradCAM
➔ technique more flexible

...

conv. conv. conv. global average-poolinginput output
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Deep Taylor Decomposition /
Integrated Gradients

gradient
find
root

input difference

attribution

baseline

sample
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