

Interpretability and Deep Learning

- Feature Visualization
- Prediction Analysis

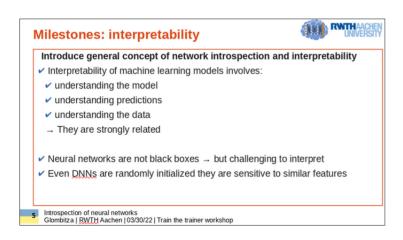
Jonas Glombitza

RWTH Aachen

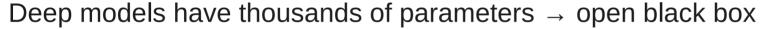
PREDICTIONS

Structure

- Example lecture
 - introduction to interpretability (field is large and developing fast)
- Milestone slides:
 - pedagogical reasoning (and important points)

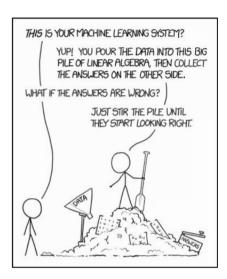


Interpretability



- "What is the model learning?"
 - → learn from trained model
- "Can we trust the model? Does the model work as expected?"
 - model verification
 - → systematic studies (strongly application dependent)

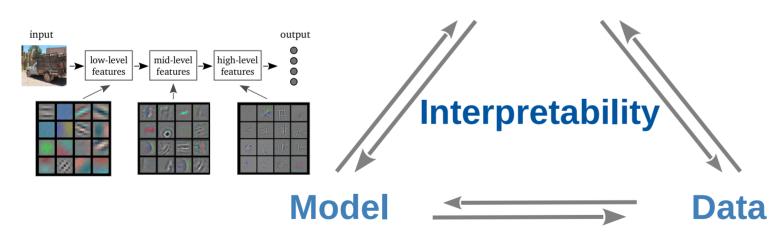
→ Interpretability



(Aller in the consoled properties in a cons

"Why is the model predicting a certain class / value?"

Predictions



"How is the model working / are features formed?" "How do DNNs see the world?

"Which part of the data is most useful?"

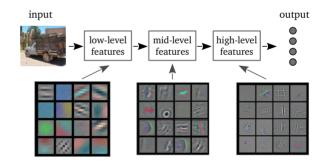
Milestones: interpretability

Introduce general concept of network introspection and interpretability

- ✓ Interpretability of machine learning models involves:
 - understanding the model
 - understanding predictions
 - understanding the data
 - → They are strongly related
- ✓ Neural networks are not black boxes → but challenging to interpret
 - ✓ propagate signals backwards, they are differentiable (no sampling needed!)
- Even DNNs are randomly initialized they are sensitive to similar features

Feature Visualization

Model Interpretability



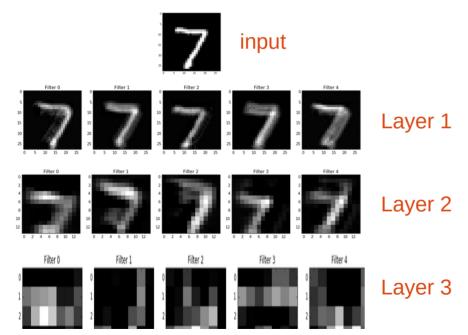
"How is the model working / are features formed?"

"How do DNNs see the world?"

Visualization of an MNIST CNN

Visualization of activations

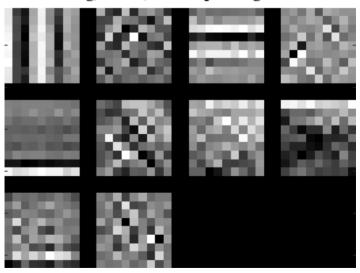
- Propagation of input through model
- Later activations hard to interpret



Visualization of first layer filters

- Edge detection
- Focus on structures in the center

First layer filters learned with mirroring, center, and dropout regularization



James Hays - http://cs.brown.edu/courses/cs143/2017_Spring/proj6a/

Transposed Convolution ('Deconvolution')

What input patterns caused a given activation?

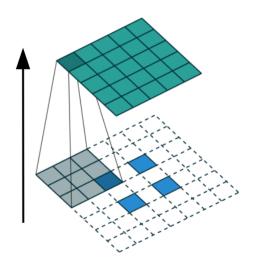
Visualize intermediate feature layers

Idea: Map activations back to input space

- Use transposed convolution layer to "invert" convolutions (approximately)
- Mapping from feature space → input space
- Use highest activation in specific feature map
- Transpose weight matrix of trained model to invert mapping
- Use ReLU after filtering

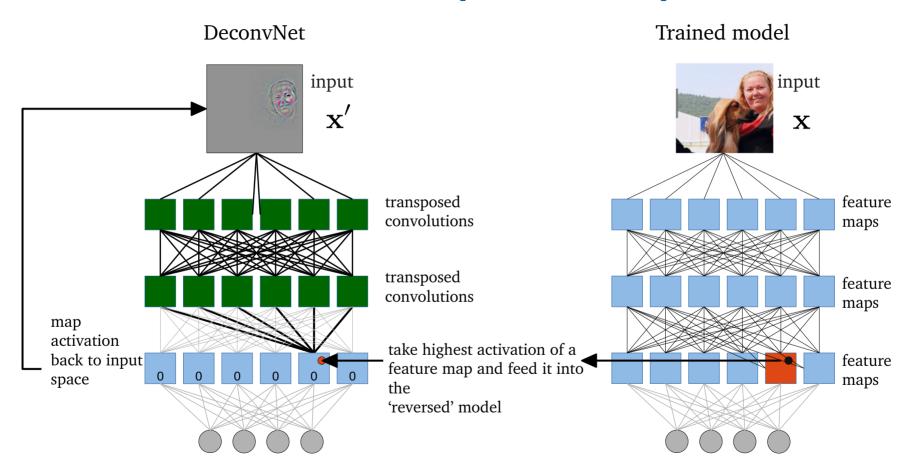
Example

Transposed convolution, fractionally strided convolution or 'deconvolution' no padding, stride 2, kernel 3 x 3



Paul-Louis Pröve, Towards Data Science

Deconvolutional Network (DeconvNet)

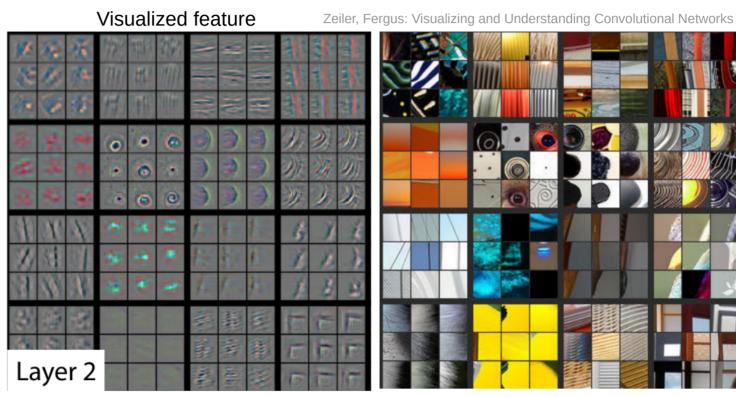


Visualization using DeconvNet

Visualized feature

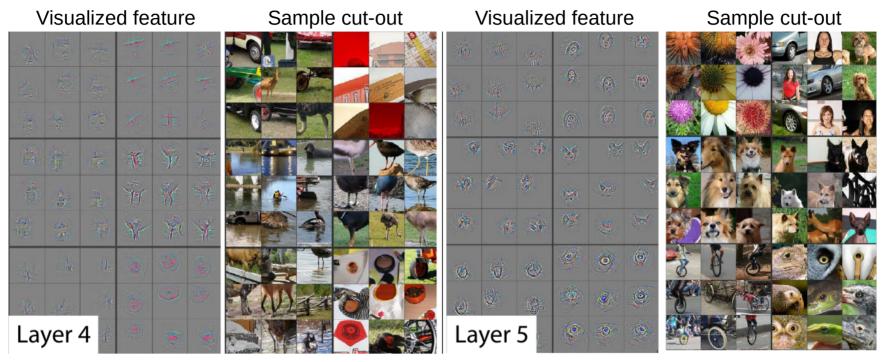
Layer 1

Cut-outs of samples which create high activation in the specific feature map



Cut-outs of samples which create high activation in the specific feature map

Visualization using DeconvNet



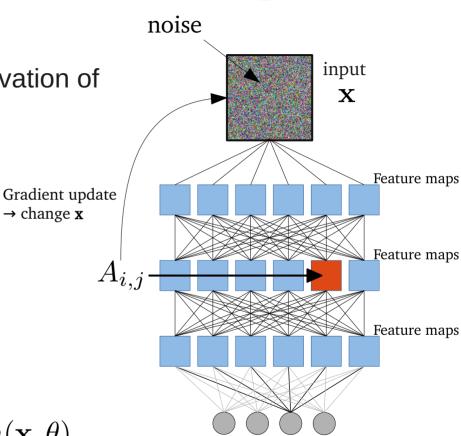
Zeiler, Fergus: Visualizing and Understanding Convolutional Networks

- Layer representation show feature hierarchy → features become more complex
- Feature semantic becomes more specific (separation more class specific)

Activation maximization

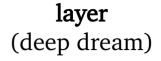
Idea:

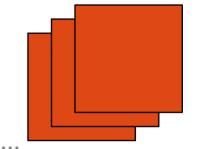
- Construct pattern which maximizes the activation of a specific feature map
- Model f_{θ} pre-trained, weights θ fixed
- Find $\tilde{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmax}} h(\mathbf{x}, \theta)$
- $h(\mathbf{x}, \theta) = \sum_{i,j} A_{i,j}(\mathbf{x}, \theta) + b$
- Start from noise
 - perform gradient ascent $\mathbf{x'} \to \mathbf{x} + \alpha \frac{dh(\mathbf{x}, \theta)}{d\mathbf{x}}$



Activation Maximization

neuron channel
objective





obtained visualizations

Summary feature visualization

- Approach to gain understanding of trained model → introspection of features
- Tracking signal propagation through model not comprehensible for humans
 - → more sophisticated approaches needed for interpretation
- Local understanding of the model:
 - introspect model around given sample (DeconvNet)
- Towards global model understanding:
 - search/generate pattern that maximize feature response using differentiable of neural networks
- Visualization confirms hypothesis of feature hierarchy, DNNs learn:
 - decomposition of input space into modular hierarchical structure
 - probabilistic mapping between high-level features

Milestones: model visualization

Understanding the building blocks of CNNs → 'What is a feature?'

- ✓ No visualization of model, but to what it is sensitive to
- Deep learning is form of representation learning
 - → nodes, feature maps, and layers dispose distinct abstraction level
 - → visualization of CNNs confirms hierarchy of features
- DNNs don't think! If CNNs work similarly to human visual cortex is under debate
- Challenge: interplay of nodes, feature maps, layers
- Several methods available (global and local):
 - propagation-based (DeconvNet)
 - ✓ gradient-based (activation maximization) / gradient estimate w.r.t. input

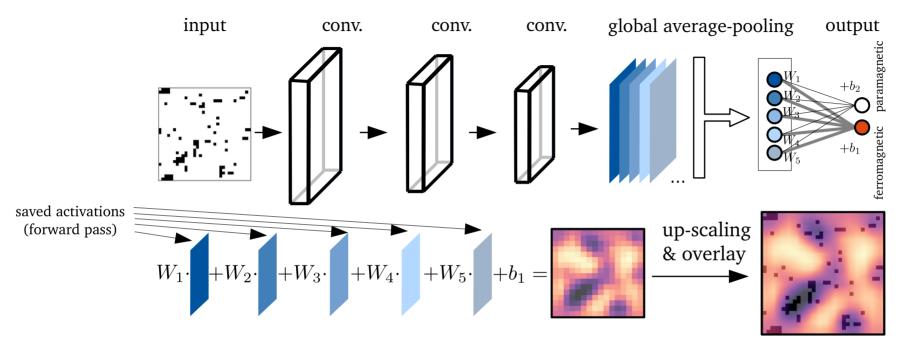
Analysis of predictions & feature attribution

(b) Explanation

"Why is my model predicting a certain class / value?" "What influences the model's reasoning most?"

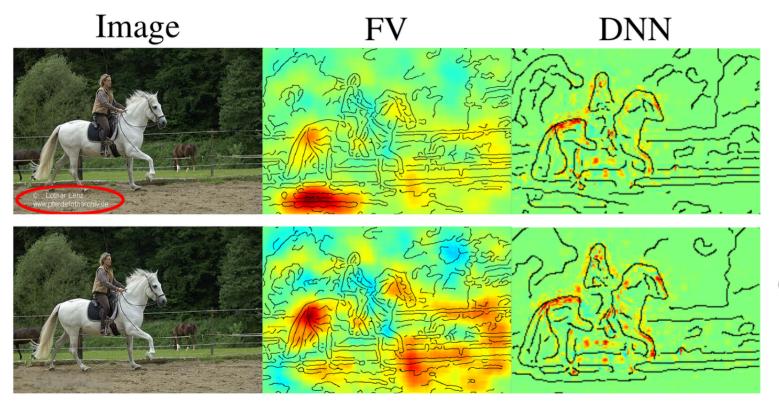
Predictions

Discriminative Localization



- Class activation map (CAM) indicates how the output of the last CNN layer is used for classification
- Generated by scaling of feature maps and up-sampling (interpolation)
- Limited to particular architecture (GAP, single fully-connected layer)

Semantic Misinterpretation



arXiv:1602.04938

(b) Explanation

(a) Husky classified as wolf

How important is the context?

Bach et. Al. - Analyzing Classifiers: Fisher Vectors and Deep Neural Networks, arXiv:1512.00172

Saliency Maps

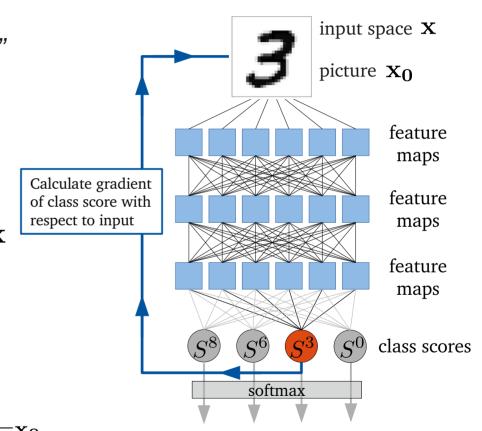
Idea:

- "What influences the class score at most?"
- → Important pixels have large gradients
- Fix network parameters
- Rank pixel importance of input space
- DNN $f(\mathbf{x})$ outputs score $S_c(\mathbf{x})$ for image \mathbf{x}
- Compute 1st order Taylor expansion

$$f(\mathbf{x}) = S_c(\mathbf{x}) \approx \mathbf{w}^T \mathbf{x} + \mathbf{b}$$

Resulting map of gradients:

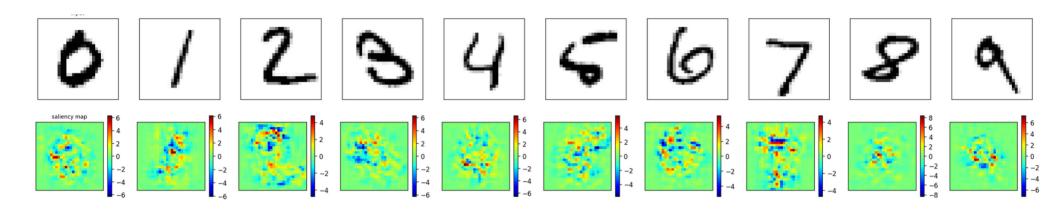
Map has dimension of input image



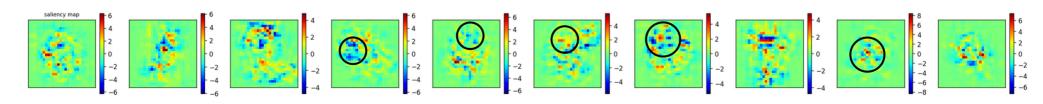
Introspection of neural networks

Glombitza | RWTH Aachen | 03/31/22 | Train the trainer workshop

Saliency Maps MNIST



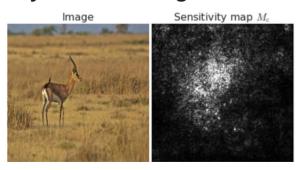
- Negative gradient: intensity increase of respective pixel → reduce class score
- Positive gradient: intensity increase of respective pixel → raise class score



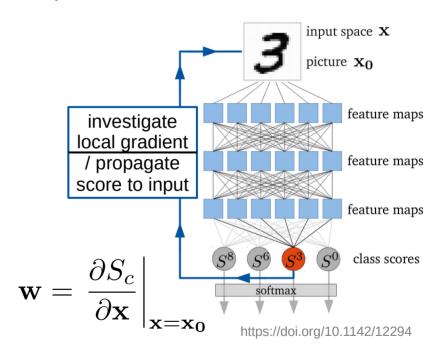
Prediction analysis

Sensitivity analyses (saliency maps ArXiv/1312.6034)

- Study to what the DNN is sensitive to
- Fast and versatile approach
- Limited expressiveness
 - does not explain prediction itself but rather how it will it may change
 - locally estimated gradients are noisy



arXiv:1706.03825



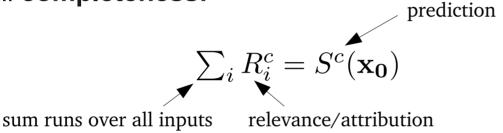
Related (advanced) approaches: SmoothGrad, Integrated gradients
 Introspection of neural networks
 Glombitza | RWTH Aachen | 03/31/22 | Train the trainer workshop

Prediction analysis

Instead of studiying sensitivity, investigate how predictions are formed

Attribution analyses

Fulfill completeness:



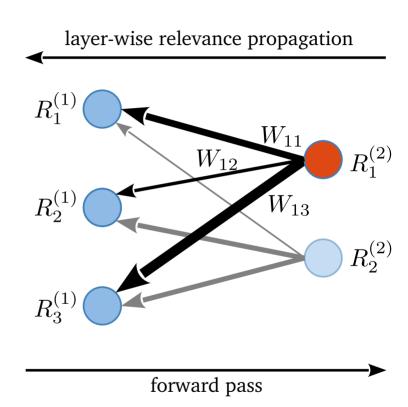
- Sum over all input relevances = prediction
 - → ranks input by it attribution to the prediction
- Common methods:
 - Layer-wise relevance propagation, IntegratedGradients, DeepLIFT

Layer-wise relevance propagation (LRP)

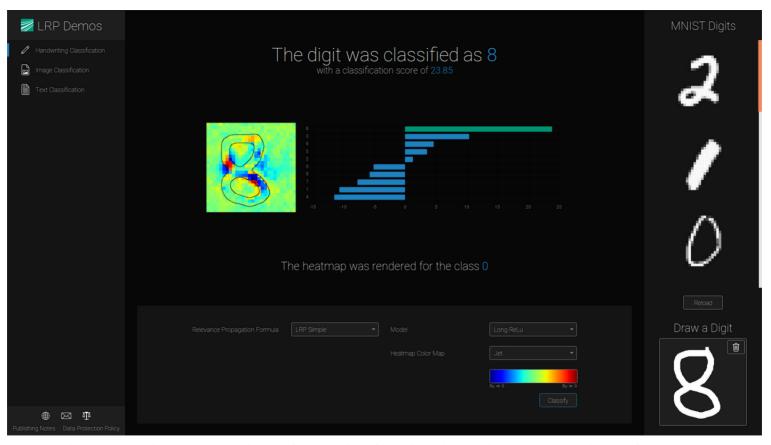
- Re-distribute activation to input
- Designed for DNNs with ReLU activation
- ε-LRP: propagation rule for ReLU networks

$$R_i^{(l-1)} = \sum_j \frac{a_i W_{ij}}{\epsilon + (b_j + \sum_{i'} a_{i'} W_{i'j})} R_j^{(l)}$$
 obtained relevance bias activations determined in forward pass

- ε controls re-distribution (numerical stability)
 - small: high sensitivity, tend do be noisy
 - larger: less noisy, sparser, absorb weak relevances



DEMO - Handwriting



https://lrpserver.hhi.fraunhofer.de/handwriting-classification

Summary Prediction Analysis

Interpretation of model predictions – "What causes the certain prediction?"

Sensitivity analysis – "To which input my prediction is most sensitive?"

- Investigate sensitivity of the model locally around given input e.g., saliency maps (gradient-based)
- Describe sensitivity and not predictions itself

Attribution analyses – "Which input contributed how much to the output?"

- Completeness criterion (attributions sum up to prediction)
- Study input relevances to the prediction e.g., LRP, IntergratedGradients, DeepLift, Discriminative Localization

Perturbation-based

- Perform perturbations of the input
- Costly, meaningful baseline important
 Introspection of neural networks
 Glombitza | RWTH Aachen | 03/31/22 | Train the trainer workshop

Milestones: prediction analysis

Understanding the predictions of deep neural networks

- Verification of model, understanding the algorithm
- ✓ Learn about the data (important inputs, selection of features, segmentation)
- Interpretation approaches
 - sensitivity analyses (to which input my prediction is most sensitive)
 - attribution analysis (which input contributes how much to the prediction) fulfill completeness, more sophisticated approaches
- Popular classes of techniques:
 - propagation-based, perturbation-based, gradient-based

Questions

- DeconvNet: "Why are the images becoming larger when going deeper?"
 - Increasing receptive field of view
- Discriminative localization: "Why the network is limited to a single FC layer?"
 - Inversion of non-linearity (to increase network capability by adding a layer)
 needed to be considered
- Code: "What causes the black visualized features maps?"
 - ReLU non-linearity, dying ReLU (no gradient for negative values)
- Activation Maximization: "Why is maximization more common then minimization?"
 - For DNNs with ReLUs, negative activations are cut away

Summary: understanding deep networks

Feature visualization

• understanding the model & building blocks – "What is learned by the network?"

Prediction analysis

• interpret a prediction – "Why a specific pattern caused a certain reconstruction"

Introspection techniques are similar and can generally applied vice versa

(applied at output vs. applied at feature level)

Fast growing field of research

- → study your network using a collection of techniques
- understand your model, debug your architectures
- Software libraries: iNNvestigate, DeepExplain, Captum

!Warning: Be cautious to disentangle observations and human implications!

Milestones (general)

- ✓ Neural networks are not black boxes → but challenging to interpret
- ✓ Interpretability involves data, model, predictions
- Diverse methods for network introspection exist (examine various aspects)
- ✓ Introduced techniques in feature and prediction analyses are strongly related
 - ✓ for model visualization (application at feature level: node, feature map, layer)
 - ✓ for prediction analyses (application at output / class score (before softmax))
- Introspection possible for various architecture (CNNs particular simple)
- ✓ Interpretation involves humans (possible bias)

Structure of the lecture

General: Top down approach (features → output)

- start with visualization of features, then investigate predictions
- include 3 multimedia breaks (one after each block) to let the audience wake up (in principle easy to switch order by interpreting output as feature)
- Simple to more complex
 - Visualization: plot filters → DeconvNet → activation maximization
 - Predictions: discriminative localization → saliency maps → LRP sensitivity → attribution
- Tutorial:
 - one example for each part
 - hard to find easy examples (implementation is relatively complex)

Multimedia resources

- Feature Visualization
 - MNIST foward CNN: https://www.cs.ryerson.ca/~aharley/vis/conv/flat.html
 - Visualization of Features: https://distill.pub/2017/feature-visualization/
 - Model Collection with Visualization: https://microscope.openai.com/models
- Prediction Analyses
 - LRP MNIST: https://lrpserver.hhi.fraunhofer.de/handwriting-classification
 - Baselines IntergratedGradients: https://distill.pub/2020/attribution-baselines/

Tutorial

- RWTHAACHEN UNIVERSITY
- Open tutorial page https://github.com/jglombitza/Introspection tutorial
- open Colab link and login with your Google Account

- Exercise 1: model introspection
 - model visualization using activation maximization

- implement discriminative localization
 - Open in Colab

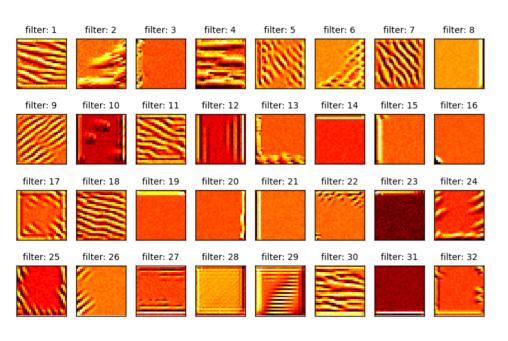
Task 1 - Code


```
model = models.load model("./my mnist model.h5")
layer names = ['conv2d 1', 'conv2d 2', 'conv2d 3', 'conv2d 4']
for layer name in layer names:
  layer output = layer dict[layer name].output
  sub_model = models.Model([model.inputs], [layer_dict[layer_name].output])
  for filter index in range(layer output.shape[-1]):
    input img = keras.backend.variable(np.random.uniform(0,1, (1, 28, 28, 1)))
     for i in range(gradient updates):
       with tf.GradientTape() as gtape:
         layer out = sub model(input img)
         loss = keras.backend.mean(layer out[..., filter index])
         grads = gtape.gradient(loss, input img)
         input img.assign add(step size * normalize(grads))
    visualized filter = deprocess image(input img.numpy())) # cast to numpy array
  Introspection of neural networks
```

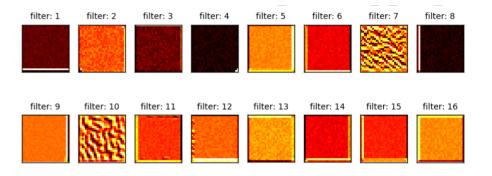
Glombitza | RWTH Aachen | 03/31/22 | Train the trainer workshop

Task 1 - Results

Layer 1

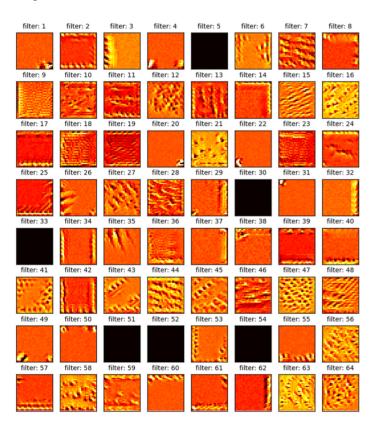


Layer 2

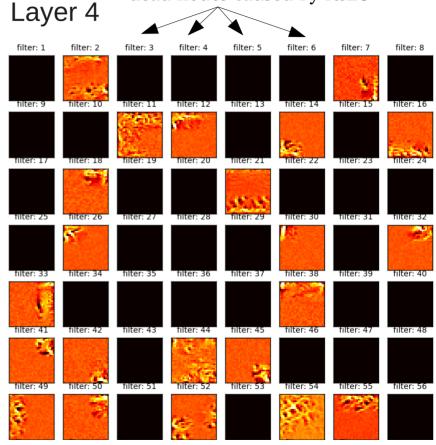


Task 1 – Results

Layer 3



dead nodes caused by ReLU

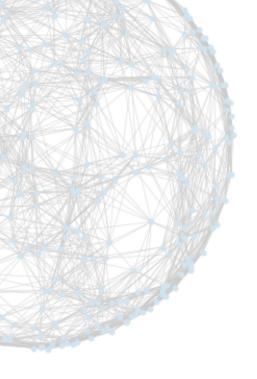


Task 2 – Code

- Which spatial regions lead to the network's decision?
 - I. Use padding to maintain spatial information
 - II.Use global pooling to collapse the spatial dimensions → probabilistic mapping
- Look how the last convolutional layer output is used for the decision

```
model = models.Sequential([InputLayer(input_shape=(32, 32, 1)),
layers.Conv2D(8, (3, 3), padding='same', activation='relu'), # (32, 32, 8)
layers.MaxPooling2D((2, 2)), # (16, 16, 8)
layers.Conv2D(16, (3, 3), padding='same', activation='relu'), # (16, 16, 16)
layers.Conv2D(32, (3, 3), padding='same', activation='relu'), # (16, 16, 32)
layers.Dropout(0.25),
layers.GlobalAveragePooling2D(), # (1, 1, 32)
layers.Dense(2, activation='softmax')])
```

```
F = ... # output of last conv layer
W, b = model.layers[7].get_weights() # weights of final dense layer
M = np.einsum('ixyz,zc->ixyc', F, W) + b # class activation maps
```



- BACKUP -

Jonas Glombitza

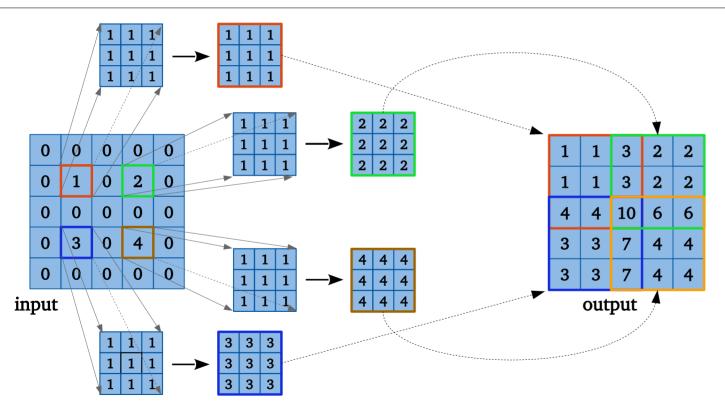
RWTH Aachen

Transposed convolution

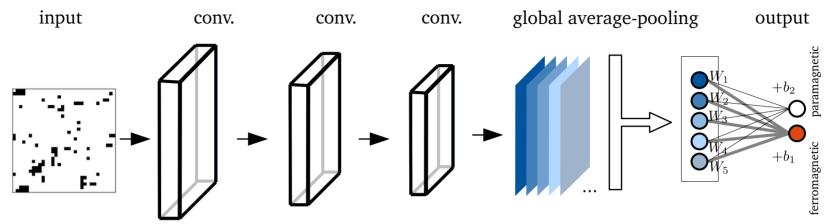
strides = (2, 2) **no** zero padding

filter

1 1 1	
1 1 1	
1 1 1	

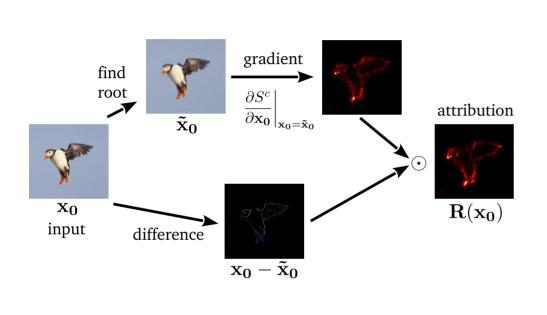


GradCAM and CAM



- Discriminative localization with CAMs requires global average pooling layer
 - enables to stack feature maps and scale with weights of the final layer
 - breaks for more complex architectures (e.g., by adding a fully-connected layer)
- → Fuse technique with gradient-based sensitivity analyses
 - propagated gradients to first CNN layers and built GradCAM
 - → technique more flexible

Deep Taylor Decomposition / Integrated Gradients



$$S^{c}(\mathbf{x_0}) = \underbrace{S^{c}(\tilde{\mathbf{x_0}})}_{0} + \underbrace{\left(\frac{\partial S^{c}}{\partial \mathbf{x_0}}\Big|_{\mathbf{x_0} = \tilde{\mathbf{x_0}}}\right) \cdot (\mathbf{x_0} - \tilde{\mathbf{x_0}})}_{\mathbf{R}} + \mathcal{O}(...).$$

$$\mathbf{R}^{c} = (\mathbf{x} - \mathbf{x_0}) \odot \int_{0}^{1} \frac{\partial S^{c}(\tilde{\mathbf{x}})}{\partial \tilde{\mathbf{x}}} \bigg|_{\tilde{\mathbf{x}} = \mathbf{x}' + \alpha \cdot (\mathbf{x_0} - \mathbf{x}')} d\alpha,$$

