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Dark Matter Evidence

m 1933: Virial theorem 2T = —U
applied to coma cluster.

Figure : Coma cluster. Figure : Fritz Zwicky.
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Dark Matter Evidence A\ ¢

Karlsruhe Institute of Technology.

m 1970’s: Rotation curves of stars in

galaxies DISTRIBUTION OF DARK MATTER IN NGC 3198
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Figure : Rotation curve data vs. predictions.

Figure : Vera Ruin.
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Dark Matter Evidence AT

Karlsruhe Institute of Technology

a After recombination baryonic structure formation profits from
preexisting dense DM regions
= galaxy formation possible in age of the Universe.
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Figure : History of the Universe.
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Dark Matter Evidence &‘(“

Karlsr

of Technology

m Gravitational lensing effects — Bullet Cluster. Misalignment of visible
and gravitational mass distribution.

Figure : Bullet cluster. Visible matter distribution (red) and dark matter distribution (blue).
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Dark Matter Evidence

a Imprints in Cosmic Microwave
Background (CMB).

Multipole moment, ¢
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Figure : CMB power spectrum (Planck
2013).

—500 m— o 500 11K o0

Figure : Temperature fluctuations in CMB (Planck

2013).
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Approaches to identify Dark Matter IT

Karlsruhe Institute of Technology

a Extension of SM motivated by a
new idea solving several
problems (e.g. SUSY, Axions). Dark Matter

m Study of all kind of higher
dimensional effective SM-DM
interactions in Effective Field
Theory (EFT).

a Simplified models: Study

PhenomenOIOQY qf s.pecmc Figure : Energy distribution of the Universe
interactions with limited number (Planck 2015).

of parameters.

Dark Energy
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The Flavour Gate to Dark Matter

Xu
Assume an analogy to the SM fermions — dark flavour triplet | x¢
Xt
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The Flavour Gate to Dark Matter ﬂ(“

Xu
Assume an analogy to the SM fermions — dark flavour triplet | xc
Xt
Flavoured Dark Matter coupling to
SM right-handed up-quark triplet: ¢
a DM flavour triplet x;, Dirac :
fermion, SM gauge singlet. |
® Heavy scalar mediator ¢, !
carrying colour and \j
hypercharge.
Xj Qi

a Lagrangian has unbroken Zs _ o . .
symmetry and hence yields \',:;?tl;g_: New physics interaction (basic
stability of DM x (for my, > m, ).
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Dark Minimal Flavour Violation (DMFV) AIT

Dark Minimal Flavour Violation:

Minimal Flavour Violation: = Novel approach.

w Standard approach. = Structure of \; left general and

a Structure of \; simple and as a new source of flavour and
completely determined by CP violating effects.
SM Yukawa couplings. a Extended number of free

a Limited number of free parameters from coupling: 3
parameters left in model. “couplings” D, ji, 3 “mixing

a Easier to analyze limited angles” 05, 3 “phases” 9.
phenomenology. a More complicated but also more

interesting phenomenology.
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How to Detect Flavoured Dark Matter? KIT

SM DM SM DM SM
SM DM SM DM SM
collider searches precision flavour data
DM SM DM DM
DM SM SM SM
indirect detection / freeze-out direct detection
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Constraints from Colliders ﬂ(“

a Study the process

p a
pp — ¢! — qaxX.
= Depending on decay product of ¢ o =
) . e Xk
we detect either a top-signature or -
ajet (+£7).
_9
a Inspiration from SUSY searches at S gi
LHC .
= Upper bounds on CS of both tt
and dijet signals.
p Xij

® Those constraints translate to Figure : Studied LHC DM production
lower bound on mediator mass and  ;qcesses.
upper bound on “couplings”.
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Constraints from Flavour Precision Data ﬂ(“

0] N ¢
————
. ] ]
m No mesons with top-quark are Lo 1 ¢
possible, the only constraints ', ',
come from D-mesons. ¢ Xi u
= not too strong Figure : NP contr. to neutral D-meson
mixing.
a The NP contribution has to be os
smaller than experimental '
bounds o0
% 0.4
a Mixing angles are associated o
0.2

with CP violation phases. :
= get constrained 8o 0s 10 15 2.0
Figure : Impact onA‘hwixing angles.
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DM Constraints from Observed Relic Abundance Q(IT

@ Assume DM abundance as a
thermal relic.
= SM matter and DM used to
be in thermal equilibrium in
early universe.
= Same order of magnitude for
energy content.

m Freeze-out: annihilation rate VS
expansion.
= Remaining relic DM depends
on speed of annihilation, i.e. on
the cross section

.
100 1000
/T (time -

"
. xem/T (time ).
Figure : Freeze-out timeline.
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DM Constraints from Observed Relic Abundance Q(IT

a Annihilation cross section
needs to have just the right
value (in tolerance interval)

to produce the observed relic

m2
PPN L. ¢
<O' V> N )\ —
eff m4
¢
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DM Constraints from Observed Relic Abundance N(IT

‘;
Dy 22
. . . 2.0 |l my=850GeV, m,=100GeV
= Annihilation cross section I 850GV, m, 150GV "
k . 1 my=850 GeV, m, =250 GeV E
needs to have just the right I -850 G, m 350 Gev
. i 15 W m=850GeV, m, =450 GeV 2
value (in tolerance interval) ‘
to produce the observed relic o &
DM.
> 05
m
oy 4 X
<O' V> off === )\ 2
mj 5
! 0. .10, 15 20 M
Figure : vaiid regions in freeze-out scenario.
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DM Constraints from Observed Relic Abundance Q(IT

Dj22
® Annihilation cross section 0 Eggggggfggg ,‘
needs to have just the right i:zgiiﬂiifiigiiiijz Y
value (in tolerance interval) 1] ST ‘
to produce the observed relic o] e
DM.
m2 05
(OV) oy AR 4m7§
¢ o

o 0. . 10, 15 0 .
Figure : vaiid regions in freeze-out scenario.

a Actual form of CS more complicated and dependent on several
criteria.
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Constraints from Direct Detection Experiments ﬂ(“'

Karlsruhe Institute of Technology

m Foremost liquid Xenon
experiments.

a Current best bounds from
LUX data
[LUX collaboration ’16].

m Several future experiments
in pursuit.

Cross Section [cm?]

|
20 30 40 60 100 200 400 600 1000
WIMP mass [GeV/c?]

Figure : Bounds of current and future direct
detection experiments.

Figure : Xenon chamber of LUX

experiment.
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Constraints from Direct Detection Experiments ﬂ(“'

Many contributions to total WIMP- Xt u
nucleon cross section: T
i
12 ol
si 2
of = Lo\ 2t + (A— 2)h[2, o~
Xt u

Xt u
¢
%__
¢
u
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Constraints from Direct Detection Experiments

Xt n
q z
o !
ai

Xt n

Figure : Cancellation of tree-level and neutron Z-penguin contributions (symbolic).

m Cancellation forces mixing angle.

m Xenon has several stable isotopes.

= Simultaneous suppression.

= Future bounds exclude high couplings.
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Results of Combined Analysis AT

Karlsruhe Institute of Technology.

a Interplay of different

constraints. my [GeV]
1200

a For given m, and my relic
abundance constraints will 1100

W LUx
XENONIT

. . [ XENONnT /17
determine coupling strength. LR
1000 s
a Upper bound of possible
coupling strength from direct oo
detection constraints # : : - my, [GeV]
100 2 600 700 ‘
Figure : Valid regions for different strengths of
= Lower bound on DM mass direct detection constraints.
from the combination (in
dependence of mediator mass)
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Results of Combined Analysis AT

Karlsruhe Institute of Technology.

a Interplay of different

constraints. my [GeV]
. . 1200
a For given m, and my relic
. . W Lux
abundance constraints will 1100} |1 xENowiT
. N [ XENONnT /17
determine coupling strength. B DRI
1000

a Upper bound of possible
coupling strength from direct
detection constraints

900

my, [GeV]

100 200 300 400 50 600 700

Figure : Valid regions for different strengths of
= Lower bound on DM mass direct detection constraints.

from the combination (in
dependence of mediator mass)

Many more interesting details and other effects.
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Summary and Outlook ﬂ(“

Simplified model of flavoured dark matter.

Leave coupling general (Dark Minimal Flavour Violation).

Demanding phenomenologically interesting DM mass in combination
with constraints also has impact on other parameters.

Interesting interplay of constraints.

m Future direct detection experiments have large impact on
parameter-space.
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The End A\ ¢

Karlsruhe Institute of Technology.

Thank you!
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The End AT

Karlsruhe Insttute of Technology.

Thank you!

Questions?
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The Flavour Gate to Dark Matter &K“

Assume an analogy to the SM fermions — dark flavour triplet x;.
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The Flavour Gate to Dark Matter &‘(“

Assume an analogy to the SM fermions — dark flavour triplet x;.

Flavoured Dark Matter coupling to SM right-handed up-quark triplet:

Lpint = —Ajlgixj¢ + h.c.

ENP,mass — _m¢¢T¢ - mx)ZX

a DM flavour triplet ;, Dirac fermion, SM gauge singlet.
m Heavy scalar mediator ¢, carrying colour and hypercharge.

m Lagrangian has unbroken Z3 symmetry and hence yields stability of
DM x (for my > m,).
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Dark Minimal Flavour Violation KIT

Flavour Symmetry
U(3)y x U(3)g x U(3)q x U(3)y
is only broken by SM Yukawa couplings and the DM-quark coupling A;i

(Dark Minimal Flavour Violation).
= Beyond Minimal Flavour Violation.

= only DM mass splitting comes from RG running:

mj = mX(]l + 77)\*)\ + )Ij = ITIX(1 + n(D)\7,',‘)2 + )(50
m 7 depends on the full theory — has to be a parameter of the
simplified model.

a flavour with lowest mass is our DM candidate.
— we choose the “top-flavour”.
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Parametrization of DM-Quark Coupling Matrix &‘(IT

Dark Minimal Flavour Violation (DMFV): \; is a general 3 x 3 coupling
matrix — 9 real parameters and 9 complex phases.

m Can be split up as (bilinear diagonalization):

A= UD\VA

with unitary matrices U, V* and diagonal real matrix D).
= Use redundancy to eliminate 3 phases in U*.
m Use flavour symmetry in dark sector U(3),, to get rid of V*

After using all the symmetries at our disposal A has 9 parameters left and
can be parametrized as:

A= U§\3U1/\3U1/\2D/\
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Constraints from SUSY Searches at LHC KIT

p qi
m Study the process
pp — ¢d" — qaxY. o .
a Depending on decay product of ¢ -7
we detect either a top-signature or 6
ajet (+r). pN @
a Inspiration from SUSY searches at YV
LHC
Xi

= Upper bounds on CS of both {7~ P

and dijet signals. Figure : Studied LHC DM production
processes.
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Constraints from SUSY Searches at LHC KIT

Involved QCD processes

g o' g ¢!
:2 ﬁ ’ e
/7 7
\ igg@(\\
\ ~
\ N
g o 9 0]
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Constraints from tt+Z; Searches at LHC

m D, 33 increased
— BR of decay goes up.
@ D, 11, Dy 22 increased
— BR of decay goes down.

a BUT: For high D) 11 = D) 2> we
observe increasing excluded
areas.
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Figure : Exclusion plot for f final state,
mixing angles set to zero.
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Constraints from SUSY Searches at LHC AT

Karlsruhe Intitute of Technology

Explanation: NP production

a Major contribution to total
production (for high D) 11,
D 22)

m This effect can make up for drop
in BR

a D, 33 not relevant, since the
protons do not contain top

Dan=Dazz ' a Very high couplings can lead to

Figure : Cross section of tf final state for serious exclusion areas.
mg = 850 GeV and m,, = 50 GeV, mixing
angles set to zero.
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Constraints from dijet + Z; Searches at LHC

600

500

200

100

0

200 400 600 800
mg [GeV]

Figure : Exclusion plot for dijet final state,
mixing angles set to zero.
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AT

Karlsruhe Institute of Technology.

a Stronger exclusion bounds on model.

a The phenomenologically interesting region
ism, <1TeV.

a Too large couplings Dy ; would exclude
nearly all of parameter space.

a Most serious constraints come from dijet
final state.

= Safe parameter-space:

my > 850 GeV
2.0 > Dy33 > Dy 22, D 11
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Influence of Mixing Angles on LHC production &‘(IT

m Mixing angles shift influences between couplings D) ji.
= For big splitting in the couplings, mixing angles can cause big
shifts in cross sections.

w For our choice of m, bounds from ¢t final state cause no constraints.

a Worst allowed case for dijet final state, in our safe parameter-space,
is D11 = Dx22 = Dy33 = 2.0
= Unchanged by mixing angles.

= Mixing angles can cause no problem with this choice of safe
parameter-space.
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Flavour Constraints from Neutral Meson Mixing &‘(IT

a No mesons with top-quark are u ————— ¢
possible, the only constraints Lo 1
come from D-mesons. Lo
= not too strong ¢ Xi u

m The NP contribution has to be Figure : NP contr. to neutral D-meson mixing.
smaller than experimental

bounds.
1 = _ *
DNP AC=2, 0
M12 - 2mD <D0|Heff neW|D >
1 * * r
= 73847r2m2 E )‘uj)‘C/)‘ui)‘C/ : L(X,’, X/) “1p - meE)BD.
¢

.
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Flavour Constraints from Neutral Meson

Mixing
(()\)\T)cu>2 - ((UADADiU/T\)cuf

m For degeneracy
Dx11 = Dy 22 = Dy 33 the
mixing matrices U will drop
out.

a The higher the splitting
A,’j = D/\y,‘,' — D/\’/'j, the more we
will see the constraints on the
mixing angle 0;.
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Figure : Valid mixing angles for different
coupling splittings. my = 850 GeV and
my = 250 GeV.

= Most significant constraints on
012, other mixings nearly uncon-
strained.
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DM Constraints from Observed Relic Abundance ﬂ(“'

m Assume DM abundance as a thermal

relic, Ty o< "2?; Xk q
® Annihilation CS has to be just large iy S

enough to produce the correct relic ¢!

density (we allow for a 10% tolerance /4)\‘\

interval): Xi qi

— Figure : Annihilation of DM flavours.
26 3
(OV) it exp = 2.2 X 107 Tcm” /s.

= cuts out valid area for D i
depending on myg and m,

1 3 Lo/ (@mE = (mc— m)?) (4m3 — (mi + mi)?)
<Uv>eff = § X % ' Z Z )\kl')\ki)\/])\lj \/ X X .

m mz 2
i,j=1,2,3 k,I=u,c,t (mi +m2 — 2k — —)
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DM Constraints from Observed Relic Abundance &‘(IT

a Depending on the mass splitting of the different DM flavours several
freeze-out scenarios are possible.

mj = mX(1 + 77(D)\,,',')2 + )(5,/

a For a DM mass below the top-quark mass this decay channel drops
out.
= CS formula and hence impact on parameters can be quite
different

a Extreme example: only x; present at freeze-out with DM mass below
top mass threshold:

3 . . 4m?
(0V)er = 2567 Z )‘k3)‘k3)‘/3)‘l37xz'
k,l=u,c mi + mi)
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Quasi-Degenerate Freeze-Out (QDF) Szenario ﬂ(“.

Karlsr

= All DM flavours are present at the Drze
freeze-out. 201 (Mmoo mensoney ’
. gar I m,=850 GeV, m, =250 GeV' .
m We require the mass splitting to be I 850G, 350GV ;

less than 1% (significantly smaller than 15 (MmeB0GY, m=450GeV) 4
T;) for this to happen. E

m 7 is free parameter — choose it

favourable: -0.01. "
m This guarantees top-flavoured DM (see
direct detection section for motivation). 05

m Constraint cuts out valid area for Dy i
depending on mg and m,,. D
- 05 . 1.0, M
Figure : Valid regions in quasréegenerate
freeze-out scenario.

a Lower bound on m, due to upper limits
for Dy, i, depending on m.
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Single Flavour Freeze-Out (SFF) Szenario ﬂ( T

a Only m, present at freeze-out.

m We require the mass splitting to be

References

more than 10% (significantly bigger
than Ty) for this to happen.

7 is free parameter — choose it
favourable: -0.075.

This guarantees top-flavoured DM (see
direct detection section for motivation).

Constraint cuts out valid area of
parameters depending on my and my,
with significant effect on mixing angles.

In addition to lower bound, we also find
an upper bound on m, due to upper
and lower (from mass splitting
condition) limits for Dy i, depending on
me.

Monika Blanke, Simon Kast — Flavoured Dark Matter in DMFV

Karlsruhe Institute of Technology.

Dy
Figure : Valid ?egionyin sinélge flavédr .
freeze-out scenario for my = 850 GeV and
my = 210 GeV.

my

Figuré : Mass bbunds in single flavéur ™
freeze-out scenario.
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DM Bounds from Direct Detection Experiments &‘(IT

Many contributions to total WIMP- Xt u
nucleon cross section: T
i
12 ol
si 2
of = Lo\ 2t + (A— 2)h[2, o~
Xt u
Xt

u
¢
a___Av
¢
u
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DM Bounds from Direct Detection Experiments &‘(IT

2
tree __ tree __ |>\ut |
flree = pffree = U0

4m

Nuil? w me
beX — 2beX _ ’ ui / Qi i .
Z 3272m 35

2
md) m

by |2 2
fphoton | it /og ”’
P 2 : 2 .
- 48mem ¢

3|\i|?€? (3 — 2sin?(© m2
7 = —Z il"e ( W)) 1+ log

m2
32m2sin?( @W)cosz(@w m2 m

) >> |
3 Ael*e? (—3) mg,
7 = - 2 :
n Z 32n2sin?(Ow)cos?(Ow)mz 1+ log
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DM Bounds from Direct Detection Experiments ﬂ(“'

m All contributions have to combine to a WIMP-nucleon cross-section below the LUX
bounds.

m All contributions are positive, only the Z-penguin with the neutron is negative
= saves the day.

m Largest contribution comes from tree-level process. Largest negative term is hence
interference term of tree-level and neutron Z-penguin.

m Most important terms, have to nearly cancel each other:

Aj_' . D§\,33 . sin(013)4 — AII . D4/\733 . sin(613)2 . COS(013)2 . 003(923)2

Xt u Xt n
¢! - ¢ !
/A)\w\ qi

Figefr% : Cancellation of tree—le\yel and neutron Z—pe%guin contributions (symbolig.
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DM Bounds from Direct Detection Experiments

Karlsruhe Intitute of Technology

m Tree level and neutron Z-penguin have
to nearly cancel each other.

= serious constraints on 613 sin(©13)
07
= For higher couplings the cancellation 06
gets more complicated. 05
04
m For too large couplings the 03
cancellation is no longer possible at all 02
— excluded. 0118

2t XK Dy 33
05 1.0 15 20 :

m Top-flavoured DM is the natural choice: Figure : Valid mixing angle ©13 vs Dy 33.

= Tree-level contribution small
= Neutron Z-penguin contribution
large.
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Combined Analysis of Constraints (QDF) AT

Karlsruhe Institute of Technology.

Combined application of both flavour, relic abundance and direct detection
constraint in quasi-degenerate freeze-out scenario.

0.8

0.6

0.4F

sin(©y)

0.2p

0'8.0 01 0.2 0.3 0.4

. A
Figure : Valid regions for m,, =850 GeV and
my = 150 GeV (QDF).
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Figure : valid region for mg = 850 GeV and
my = 250 GeV (QDF).
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Combined Analysis of Constraints (QDF) ﬂ(“

a A combination of relic
abundance and direct detection
constraints confine 645 to a
narrow interval.

sin(®3)

m The bounds on the DM mass

become more serious, since the B =850 GeV, =100 GeV
. [ my=850 GeV, my=150 GeV
parameters do not only have to =350 Ge, my =250 GeV
fulfill relic abundance e 8
433
constraints. Figtre : Vaiid régions i?f‘}aw-ﬂfag-pﬂaﬁe QBP.

a The combined analysis clearly
prefers top-flavoured DM.
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Combined Analysis of Constraints (SFF) AT

Karlsr

te of Technology

Combined application of both flavour, relic abundance and direct detection
constraint in single flavour freeze-out scenario.

0.8 0.8
12=(04 11 -Daz2 12=(05.11-Da22

06 . 06 300 1Oun
. W A3=i0322-Or:a . W 023503 22-Dazal
o) )
= 0.4 = 0.4
B B

0.2 02

0. = 0. :

8o 05 1.0 1.5 2.0 8o 05 1.0 1.5 20
Ay . A
Figure : Valid region for m,, = 850 GeV and Figure : Valid regions for mg = 850 GeV and
my, = 225 GeV (SFF). my, = 250 GeV (SFF).
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Combined Analysis of Constraints (SFF) AIT

a A combination of relic
abundance and direct detection
constraints confine #13 to a iy
narrow interval (even more
serious than in QDF).

m Especially in SFF the ol
combination of all constraints
extremely limits the chance of
flndlng a valid Conflguratlon of Flgul"é : Valid regions in mass plot for combined
all parameters for m,,, < myqp. constraints (SFF).

my.

a The combined analysis clearly
prefers top-flavoured DM.
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Backup Material 1 IT

Karlsruhe Institute of Technology.

[l D.11=D32:=2.0, D;33=0.0

[ D1.11=D322=0.5, D3.35=0.0

my [GeV]

0 -~
200 400 600

800 1000
Figure : Exclusion plots for dijet final state f§f*"V&H8us couplings, mixing angles set to zero.
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Backup Material 2
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Karlsruhe Institute of Technology.

Figure : Exclusion plots for dijet final state f§f*"V&H8us couplings, mixing angles set to zero.
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Backup Material 3 A\ ¢

Karlsruhe Institute of Technology.
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Figure : Exclusion plots for dijet final state f§f*"V&H8us couplings, mixing angles set to zero.
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Backup Material 4 \

Karlsruhe Institute of Technology.

W D;.11=D;2:=2.0, DA-n‘Z 0
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~
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Figure : Exclusion plots for 7 final state for VrioUs couplings, mixing angles set to zero.
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Backup Material 5a
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Figure : Cross section for tt final state, mixing angles set to zero.
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Backup Material 5b

Karlsruhe Intitute of Technology
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Figure : Cross section for dijet final state, mixing angles set to zero.
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Backup Material 6 IT
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Backup Material 7 A

Karlsruhe Institute of Technology.
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Figure : Valid mixing angles for different coupling split!ings. mg = 850 GeV and m,, = 250 GeV.
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Backup Material 8

Karlsruhe Intitute of Technology

W m,=850 GeV, m, =100 GeV'
W m,=850 GeV, m, =150 GeV
I m,=850 GeV, m, =250 GeV
| my=850 GeV, m, =350 GeV'
W m,=850 GeV, m, =450 GeV'

Dy 11

. ) ) ) , 0.5 1.0 15 ; )

Figure : Valid regions in quasi-degenerate freeze-out scenario in Dy 11 — Dy 22-plane for various DM
masses.
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Backup Material 9
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Figure : Valid regions in quasi-d

masses.
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Backup Material 10

Dy a3

20

1.8

1.6

1.4

1.2

1.0

Karlsruhe Intitute of Technology

W m,;=850 GeV, m, =100 GeV
Bl m,=850 GeV, m, =150 GeV
] my=850 GeV, m, =250 GeV
] my=850 GeV, m, =350 GeV
W m,;=850 GeV, m, =450 GeV

Figure : Valid regions in quasi-d

masses.
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Backup Material 11
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Figure : Valid regions in single- flavour'Jreeze out scenario in Dy 33 — sin(©j)-p 2|ane for
mg = 850 GeV and m, = 150 GeV.
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Backup

Material 12
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Figure : Valid regions in single-flavour freeze-out scenario in Dy 33 — sin(@,j)-%lane for
mg = 850 GeV and m, = 210 GeV.
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Backup Material 13 T

Karlsruhe Institute of Technology.
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Figure : Valid regions in single-flavour freeze-out scenario in Dy 33 — sin(©)-plane for
mg = 850 GeV and m, = 230 GeV.
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Backup Material 14
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Figure : Validcr]égions for LUX E)O%nds in Dy 33 1—'ssin(G)13)—pIa2r1'e.
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Backup Material 15 Kﬂ(“
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Material 16
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Figure : Valid regions fc;lr'EUX boundl % Dy 33 — gih?@13)—pla1n'e8, with SFFZS'Qitting applied.
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Backup Material 17
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Figure : Valid regio?l'ssof comgih%d anal}s’% for qugs'ﬂdegengr'aﬁe freezllgut scen%'r?o in
Dy 33 — sin(©13)—plane for different DM masses.
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Backup Material 18
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Figure : Valid mixing angles for different coupling spIittiAgs for quasi-degenerate freeze-out scenario.
mg = 850 GeV and m,, = 150 GeV.
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Backup Material 19
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Figure : Valid mixing angles for different coupling spIittiAgs for quasi-degenerate freeze-out scenario.
mg = 850 GeV and m,, = 250 GeV.
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Backup Material 20
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Ags for single-flavour freeze-out scenario.

Figure : Valid mixing angles for different coupling splitti
mg = 850 GeV and m,, = 225 GeV.
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Backup Material 21
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Figure : Valid mixing angles for different coupling splitti
mg = 850 GeV and m,, = 250 GeV.
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Backup Material 22 AT
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Figure : Valid regions for my = 850 GeV and m,, = 250 GeV in ©13-D) 33-planefor different
strengths of direct detection constraints in QDF.
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Figure : Valid regions in Wa%s Scan %P&fferent sggr%ths of di‘l%?:?detection constraints in SFF.
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Backup Material 24
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