Sensitivity studies

Anthony Onillon (TUM)

Other contributors to this work:

Dominic Batzler (KIT), Martin Descher (KIT), Andrew Gavin (UNC), Anton Huber (KIT), Susanne Mertens (TUM), Andrea Nava (Bicocca), Korbinian Urban (TUM), Pia Voigt (TUM)

TRISTAN workshop 05/07/2022

- I. Introduction
- II. Scenarios and sensitivity estimation
- **III. Statistical sensitivity**
- IV. Systematic uncertainties : individual effect
- V. Systematic uncertainties : combined effect
- **VI. Conclusion & perspectives**

Summary

Sensitivity study

- How does the parameters of the experimental setup affect the sterile neutrino sensitivity
- > How does the uncertainty on the parameters affect the sterile neutrino sensitivity
- Identify / classify of the most critical parameters

Sensitivity performed with the TRmodel

1st TRISTAN review talk

TRISTAN Review Part 1 (Sensitivity – April 2022) : <u>https://indico.scc.kit.edu/event/2701/overview</u>

Disclamer : all plots of this presentation are preliminary!

Not included:

- Backscattered and backreflected electrons at the detector (see Andrea's talk)
- Magnetic trapping (see Susanne's talk)
- T-decay on RW (see Dominic's talk)

2 scenarios

Basic

- Nominal B-fields current KATRIN configuration
- ➢ RW: Gold

Advanced

- Optimised B-fields, RW material (Be) and PAE = 20 kV
 - reduced RW events and backscattered detector events
 - reduce pile-up, charge-sharing and dead-layer events in the ROI

Component	Scenario 1	Scenario 2
Rear wall	Gold	Beryllium
B _{RW}	1.26 T	0.32 T
B _{source}	2.52 T (Θ _{RW} = 45°)	2.52 T (Θ _{RW} = 21°)
B _{pinch}	4.2 T ($\Theta_{max} = 51^{\circ}$)	2.52 T (Θ _{max} = 90°)
B _{det}	2.52 T (map 100% of source)	1 T (map 40% of source, and full la
Post acceleration	10 kV	20 kV

2b – Neutrino signal

- Low sterile mass : signal shape distorted because of the pile-up
- Mid-range sterile mass : signal shape distorded, signal sift because of the backscattering at the detector & spectrum normalisation
- High and low sterile mass : signature closer to the edge of the ROI → lower statistical sensitivity expected

attering at the detector & spectrum normalisation tical sensitivity expected

- Sensitivity for a differential measurement
- Same procedure as for eV-sterile neutrino search in KATRIN
- Grid scan in m_s and $sin^2\theta$
 - $_{\circ}$ χ^{2} computed at each grid point contour draw @95% CL
 - statistic and systematic uncertainties included via covariance matrix
 - nuissance parameter : global signal amplitude

$$\chi^{2} = \sum_{ij} (S_{i}^{H0} - S_{i}^{H1}) (\sum^{-1})_{ij} (S_{j}^{H0} - S_{j}^{H1})$$

- *S*^{*H*0} : spectrum for the null hypothesis
- S^{H1} : spectrum for the alternative hypothesis, sterile neutrino admixture with m_s and sin² θ at the grid point
- \sum : covariance matrix statistics + systematics

Statistical uncertainty (analytical calculation)

- Diagonale covariance matrix
- Bin uncertainty: $\sigma_N = \sqrt{N}$

Systematic uncertainty (MC method)

- Compute covariance/correlation matrices

2d – Covariance matrix generation

• Simulation of a large number (~50 000*) of random spectrum with different value of one input parameters assuming a gaussian pdf (e.g. deadlayer: $N(dl = 58 nm, V_{dl} = 4 nm)$)

Rate per pixel limited to 100 kcps due to dead time \Rightarrow Maximal total rate: 10⁸ cps = 100 Mcps

Rate can be adjusted via

- > Column density
- Retarding potential (mass range)
- Magnetic fields (acceptance angles)

Optimal column density ~1% for the full mass range

Statistical sensitivity at the 10⁻⁴ level is reached within days, even with 0.01% column density

Statistical sensitivity at 2.10⁻⁷ is reachable in 1 year for all mass ranges

This work: focus on 1.10¹⁴ electrons in the full mass range (18.55 keV)

- $\succ \rho d = 0.1\% \rightarrow 1$ years of data taking
- $\triangleright \rho d = 1\% \rightarrow 1$ month of data taking

3a – Statistical limit : rate consideration

	10-
This work: 1.10 ¹⁴ electrons, full mass range	10-
 sensitivity at the 10⁻⁶ level @10 keV sensitivity < 10⁻⁵ in the range 2-17 keV 	0 zus 10-
	10-

Fig. Sterile signal for a moke data sample (blue) for $m_s = 10$ keV and 1.10^{14} electrons (scenario 1). bins width = 1 keV.

3b – Statistical limit

Systematic included in this work

	Component	Value/Comment	U
Rear Wall	Backscattering	Gold (30%), Beryllium (2.8 %)	
Source	Source scattering	0.1%, 1%, 10%	
Detector	Dead layer	58 nm	
	Charge sharing	15 μm	
	Backscattering	simulated via incidence angle	
	Resolution	FWHM @ 20 keV = 241 eV	
B-field	Source	S1: 1.26 T / S2: 0.32 T	
	Pinch magnets	S1: 2.52 T / S2: 2.52 T	
	Detector	S1: 4.2 T / S2: 2.52 T	
Read-out	Pile-up	Time resolution : 112 ns	
	Electronic noise	1σ smearing width : 43.7 eV	
Background	Constant and arbitrary shape	>10 ⁻³ cps/keV	

- Systematic effect on the spectrum typically at the sub percent level but multiple order above the sterile neutrino signal
- Very smooth effect no kink link effect

4a – Systematic uncertainties

• Effect strongly correlated accross the energy bins → sensitive to the shape (i.e. can the parameter systematic mimic the neutrino signal?) rather its strengh

Rear Wall

Gold

RW contribution to the total spectrum (full mass range) :

4b – Individual effects : rear wall

Plot by M. De

Scenario 1 : 54.7% **Scenario 2**: 0.6%

Rear Wall

- Assume uncertainty of 10% on backscattering probability
- High impact of RW in nominal configuration
- Effect can be mitigated with new RW and magnetic field optimization

Plot by A. Nava

Column density

- Assume uncertainty of 2% on column density
- Scattering effects sub-dominant, due to reduced column density
- Effect can be mitigated with less density

 10^{-3} 10^{-4} $\sin^2 \theta_{e4}$ 10-5 10^{-6}

 10^{-7}

0

Plot by A. Nava

11/23

Detector : post-acceleration

- **Post acceleration** increases the incident angle → **reduced backscattering** ullet
- **Post acceleration** shifts **pile-up events** above the endpoint •
- Post acceleration shifts spectrum above charge-sharing and dead-layer events •

4d – Individual effects : detector

Plot by A. Nava

 10^{-3}

 10^{-4}

 10^{-5}

 10^{-6}

 10^{-7}

U

 $\sin^2 \theta_{e4}$

Detector : dead-layer

- Assume uncertainty of 2 nm on dead-layer thickness
- Effect can be mitigated by post acceleration

4d – Individual effects : detector

Plot by A. Nava

13/23

Detector : backscattering

- Assume uncertainty of 5° on incidence angle → emulate backscattering uncertainty
- Effect can be mitigated by post acceleration

Plot by A. Nava

14/23

Detector : charge-sharing

- Assume uncertainty of 3 µm on charge cloud size
- Effect can be mitigated by post acceleration

Plot by A. Nava

15/23

Detector : pile-up

- Assume uncertainty of 10% on time resolution
- Effect can be mitigated by post acceleration

4d – Individual effects : detector

Plot by A. Nava

16/23

Magnetic fields

- Bfields assumed stable
- Assume respectively 0.25% and 0.1% for Bsrc and Bpinch as KNM5. 0.25% for Bdet
- Brw impact tested with 0.25% but not inluded in the final uncertainty budget (redondant with amp_rw = 1 ± 0.1)
- High impact of Bpinch and Bsrc for both configuration

4e – Individual effects : propagation

Background

- Expect background level of 10⁻³ cps/keV (F. Harms PhD)
- Signal to background at the level of 10⁸ (ρd = 0.1%)

Test 1 : check for impact of constant background rate

 \Rightarrow no significant impact of the background even for unrealistically high rate

Test 2 : check for impact of background shape knowledge

flat spectrum: shape unknown (accounted with uncorrelated uncertainties between the bins)

> \Rightarrow Background starts to matter only for very high rates, and large uncertainties

 \Rightarrow Additional test in progress

4e – Individual effects : background

5a – Combined systematic uncertainty

Scenario 1

- ➢ PAE = 10 kV
- ➢ RW: gold
- > Nominal B-fields

\Rightarrow Systematic effects reduce the sensitivity by (at least) one order of magnitude

Scenario 2

- ➢ PAE = 20 kV
- ➢ RW: Beryllium
- > Optimal B-fields

stat+1 breakdown, $m_s = 10$ keV, statistics = 10^{14} electrons

- @10keV: 3 dominant contributors: RW, Bsrc & Bpch (RW contribution strongly decreased for S2)
- @3keV: no strongly dominant contibutor beside RW for S1

5b – Systematic breakdown

Response of the experimental setup from simulations

- RW and detector response from G4 simulations potentially the source later on \clubsuit limited G4 statistic \rightarrow non-negligeable statistical uncertainty
- Impact investigated with a MC
 - Random spectra with statistical fluctuations added on the detector and RW response matrices

For a full MC-based experimental response (1st phase), ~500 years of computing with 100 cores required for the MC statistical uncertainty to be non-dominante

New approach need to be considered!

Investigation on-going : parametrized response (from MC) with parameters from calibration data

See TRISTAN review part 3 (Calibration)

First version of deep tritium model

- Allows to study systematic effects
- Probably not precise enough to fit the data

Statistical sensitivity

- 1 x 10⁻⁴ can be reached after days (at rho-d = 0.01 0.1%)
- 1 x 10⁻⁶ requires 1 month @ rhod = 1% or 1 year @ rho-d = 0.1%
- 2×10^{-7} requires 1 year @ rhod = $1\% \rightarrow$ maximum in Phase-1 (9 modules)

Systematic

- 12 systematics investigated
- effects reduce the sensitivity by (at least) one order of magnitude
 - Rear wall \rightarrow need to **block RW** electrons
 - Detector effects \rightarrow need **Post Acceleration**
 - Non adiabatic motion \rightarrow need probably **new LFCS** to extend the interval to 15 keV below E₀

Conclusion

Include systematic not yet considered

Effect	
T-decays on the RW	
Shape uncertainties of RW backscattering spectrum	
Plasma	
Magnetic trapping in the WGTS	
Uncertainties of cross-section and energy loss function	
Detector backscattering + backreflection	
FSD uncertainty and energy dependence	
Theoretical uncertainties	
Statistical uncertainties of response matrices	
DAQ – non linearity	

- Investigate the impact of non-linear correlation coefficients on the individual & combined systematics
- Sensitivity with empirical model starting soon

See TRISTAN review part 3 (Calibration)

Integral mode (MS) – in progress

Perspectives

Status
In progress
Not started
In progress
Not started
In progress
Collaboration with Saenz started
Considered in publication, has to be reevaluated (arXiv:1409.0920)
In progress
In progress

Annexe

Sensitivity with covariance matrices

Assumed linear correlation (person correlation coefficient) between the energy bins of the spectrum

Observations

- \succ Non linear correlations between the bins
- > Correlation matrix never fully correlated : small uncorrelated componant that change with the value of the systematic uncertainty
- > Different sensitivity for the combined systematic case if the total covariance matrix is obtained
 - from a MC with all parameters randomized simultaneously
 - uncorrelated sum of the covariance matrix of each single systematic

6b – Potential limitation of the covariance matrix approach

Investigation ongoing \Rightarrow

Based on preliminary work, \Rightarrow no indication that the computed sensitivity are underestimated

Impact of the mass range (optimal ρd)

Plot by M. Deschner

Combined systematic uncertainty

- Can we push this?
- Maximum:
 - 1 year @ $\rho d = 1\% \rightarrow 100$ kcps/pixel
 - Total stat: 5 x 10¹⁵ electrons 0
- systematic uncertainties decrease with increasing statistics
- even higher rates would require Phase-2 detector:
 - 21 modules = 3000 golden pixels 0

