

0 0 0 0 0 0	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	• • • • • • • • •	0 0 0 0 0 0	• • • • • • • • •	6 10 a								LABORATORY		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Т	RI	S	ГA	N	S	D	D								
0 0	0		0 0	• • •											• • • • • • • • • • • • • • • • • • •		0
		0 0 0													o		0
		0.0000												- •	S. Jansen, <u>P. Lechner</u> , A. Mayatska, •	•	0
		0 0 0													D. Mießner, G. Schaller, F. Schopper °	•	D
		• • •													MBC Somiconductor Laboratory	-	0
																	0
		0 0 0	0 0	0 0 0	0 0	0 0 0	0.0	0.0	0. 0.	0 0	•	8. 30	0 0		TRISTAN Workshop, KIT, 06.07.2022		0

TRISTAN

requirements

- ▷ spectroscopy
- \triangleright minimal energy loss
- ▷ beam dimension
- ▷ high count rate

- ➡ good energy resolution
- ➡ thin entrance window
- └→ large area coverage
- ➡ segmentation

- < 300 eV FWHM @ 20 keV (25 el. ENC)
- < 100 nm dead layer
- $\emptyset \sim 20$ cm focal plane, ~ 300 cm²
- $\emptyset \sim \text{mm}$ cell size, ~ 1.000 cells

- detector choice: Silicon Drift Detector SDD
 - ▷ small capacitance & large cell area

▷ multi-channel option

- principle
 - signal charge collection on small readout node by internal static electric field
 - ▷ X-ray & particle spectroscopy
- large area
 - ▷ 5 mm² ... 1 cm² (... wafer scale)
- small capacitance
 - \triangleright low noise, high count rates
- fully depleted and sensitive
 - ▷ efficiency @ high energies
- backside illuminated, uniform thin window
 - ▷ efficiency @ low energies
 - ▷ peak/background ratio
- integration of 1st amplifying FET
 - \triangleright further capacitance reduction
 - \triangleright no pickup, no microphonic noise

- simulated electrostatic potential
 - \triangleright equipotential lines $\Delta V \approx 1V$
 - \triangleright strong E-field \perp surface, weak E-field || surface
 - \rightarrow fast vertical drift to 1D potential minimum
 - \rightarrow 'slow' horizontal drift to readout structure

- ▷ two saddle points (vertical minimum & horizontal maximum)
 - cell edge
 - barrier of readout structure
 - \rightarrow "field-free" regions

- flexible size & shape
 - cell sizing by number & width of field strips
 - ▷ cell shaping by bended field strips
 - ▷ any 2D geometry
 - ▷ multi-cell option

SDD module,

PETER LECHNER | MAX PLANCK SOCIETY | SEMICONDUCTOR LABORATORY

- numerous fields of application
 - \triangleright commercial products
 - ♦ electron microscope EDX
 - ♦ X-ray fluorescence XRF

exploded pressure sensor – SEM image

elemental mapping by EDX SDD

numerous fields of application

\triangleright scientific experiments

production SDD33

- \triangleright volume 6 (+2) wafers
- \triangleright SDD with integrated FET
- ▷ 166 cell device (~ 14 x 12 array)
 - ♦ 120 "full" cells
 - ♦ 46 edge cells for event reconstruction
- ▷ cell size $\emptyset \approx 3 \text{ mm}$, A $\approx 7 \text{ mm}^2$
- \triangleright chip format 38 x 40 mm²
- \triangleright organized in 14 groups of 12 (11) cells
- \triangleright 2 rows of ~ 180 bond pads
- $\,\triangleright\,\,$ cut corner for back side bonds
- \triangleright smaller formats 8 x 6 cells
 - 2 x 6 cells
 - 7 cells
 - 1 cell

layout of 166 cells TRISTAN SDD

SDD33 dummy wafer

- wafer & die level test
 - \triangleright semi-automatic stepping & test function
 - ♦ stability of diodes
 - ♦ integrity of insulating layers
 - ♦ characteristics of integrated voltage divider
 - ♦ characteristics of integrated FET
 - ♦ leakage current
 - high yield, expected performance figures \triangleright

wafer coordinate X [mm] →

TRISTAN WORKSHOP | KIT | 06.07.2022 |

module concept

- ▷ 4-side buttable
- ▷ perpendicular orientation of
 - ♦ mechanical structure
 - thermal connection
 - ♦ signal & supply lines

performance

- \geq 2 working modules (165 of 166 cells)
- ▷ energy resolution 195 eV FWHM @ 5.9 keV (-50 °C)
- ▷ room for improvement

plots from D. Siegmann's IWoRID poster

- drain series resistance
 - ▷ SDD33.2
 - \triangleright voltage drop ~ 1 V
 - \triangleright caused by polySi bus pieces

- ▷ parallel metal line
- \triangleright bus support

▷ all-in-metal drain bus

noise

- ▷ contact resistance
 - ◊ repaired by additional shallow n-implantation
 - ◊ now standard process routine
 - ♦ positive effect confirmed

voltage [V]

- ▷ white noise & random telegraph signal
 - ◊ caused by traps
 - ◊ reason unclear
 - ♦ DLTS analysis effort without concrete result
 - o unknown from previous & parallel productions
 - ◊ rely on one-time occurence

crosstalk

- ▷ capacitive coupling of signals source ←→ feedback lines of different cells
- correlation with length of parallel connection lines inside the cell array

e.g. **#36 - #32 - #28**

additional contributions from outside the cell array

e.g. **#36 – #33**

crosstalk measurements by K. Urban

- crosstalk inside of the pixel array
 - ▷ assumption
 - → transmitted via high-ohmic connected drift rings
 - ▷ simulation not practicable
 - ▷ intuitive approach
 - $\rightarrow\,$ reduction of coupling capacitance by
 - ♦ thick insulator
 - ♦ distance between cell connections
 - ◊ narrow signal lines
 - ◊ capacitive clamping by ground plane
 - \triangleright in parts confirmed by SDD33.3

- crosstalk inside of the pixel array
 - ▷ layout & process modifications
 - ♦ thick insulator

 SDD33.2
 SDD33.3
 SDD35

 400 nm
 → 800 nm
 → 1400 nm

- ♦ distance between cell connections
- ◊ narrow signal lines, 20% width reduction
- ◊ (capacitive clamping by ground plane)

signal & supply line routing **SDD33.2**

signal & supply line routing **SDD35**

PETER LECHNER | MAX PLANCK SOCIETY | SEMICONDUCTOR LABORATORY

SDD33.2

1E-11

1E-12

1E-13

1E-14

1E-15

1E-16

1E-17

1E-18

1E-19

1E-20

1E-21

1E-22

capacitance [F]

TRISTAN SDD

- crosstalk via bond pads
 - ▷ assumption
 - \rightarrow transmitted via loosely connected bulk
 - $\,\triangleright\,\,$ device simulation
 - $\rightarrow\,$ reduction of coupling capacitance by
 - \diamond thick insulator
 - $\diamond\,$ smaller bond pads, larger gaps
 - $\diamond\,$ bond pads enclosed by ground frame

TRISTAN WORKSHOP | KIT | 06.07.2022 | 16

1.000e+18 1.000e+16

1.000e+08

total pad cap n

diff cap n+2

1000

diff cap n+1

400

80 x 200

0

- crosstalk via bond pads
 - ▷ assumption
 - \rightarrow transmitted via loosely connected bulk
 - \triangleright device simulation
 - $\rightarrow\,$ reduction of coupling capacitance by
 - ♦ thick insulator
 - ◊ gap between cell connections
 - ◊ grounded deep n-implantation

- crosstalk outside of the pixel array
 - ▷ layout & process modifications
 - ♦ thick insulator

 SDD33.2
 SDD33.3
 SDD35

 400 nm
 → 800 nm
 → 1400nm

- ♦ small bond pads
 - 100 x 300 μm² → **80 x 200 μm²**
- ♦ deep n-implantation & substrate contact
- ◊ gap between cell connections
- ♦ fan out of connection lines

signal & supply line routing **SDD33.2**

signal & supply line routing **SDD35**

- entrance window
 - \triangleright implanted diode
 - ♦ minimum energy & dose
 - min 'dead layer' thickness limited by profile diffusion
 @ thermal treatment for B activation
 - ▷ molecular beam epitaxy (MBE)
 - ♦ growth of B-doped Si
 - ♦ shallow profiles
 - ◊ external service by partner lab
 - ◊ tested on diode level
 - ◊ confirmed by e-beam current measurements
 - $\diamond\,$ tbd: no. of wafers for MBE process

SIMS measured boron profilesimplanted entrance windowepitaxial grown layer(s)

• new production SDD35

\triangleright	volume	10 wafers
\triangleright	chip count	6 x 166 cells
		2 x 47 cells
		8 x 7 cells
\triangleright	status jul22	lithography n ⁺ implantation
\triangleright	e.t.a.	q1 of 2023

SDD35 wafer layout