

Goal

Investigation of electron backscattering and its impact on the sterile neutrino search with $\ensuremath{\mathsf{TRISTAN}}$

- Step 1: Simulate backscattering with Geant4
- Step 2: Develop experimental setup
- **Step 3:** Take measurements + Analyse data
- **Step 4:** Compare measurements to simulations
- **Step 5:** Improve simulations
- ▶ Step 6: Extract backscattering coefficients for TRISTAN

Step 1: Geant4 Simulations

Geant4

- Physics List: G4EmStandardPhysicsSS (details see Geant4 - Guide For Physics Lists, Release 10.7, p.27)
- Range Cut: 10 nm
- **Energy Production Cut:** 10 eV
- Basic Setup:
 - ▶ World = Sphere (R = 0.5 m) filled with vacuum (G4-Galactic)
 - Point-like mono-energetic e⁻ source at (0,0,-10)cm

Spreng, Daniela

Setups

• Setup 1 to 3:

- 1st detector = 7-Pixel SDD at (0,0,0) made of 7 polyhedras (d = 3 mm)
- 2nd detector = World sphere as backscattering detector (save energy and position of leaving e⁻)
- Setup 1: 450 µm silicon (G4-Si), fully sensitive
- Setup 2: Setup 1 including a 50 nm dead layer at entrance side
- Setup 3: Setup 2 including a 10 nm silicon dioxide (G4-Silicon-Dioxide) layer at entrance side

Step 1: Geant4 Simulations

6/22

Setups

Setup 4 to x:

- 1st detector = 7-Pixel SDD made of 7 polyhedras (d = 3 mm)
- 2nd detector = 166-Pixel SDD made of 166 polyhedras (d = 3 mm) as backscattering detector
- ► 3rd detector = World sphere
- 1st and 2nd detector: 450 µm thickness , 50 nm dead layer and 10 nm silicon dioxide layer
- Still work in progress

Spreng, Daniela

Angle Definition

7-Pixel SDD Energy Spectrum

- Peak at E_I = 10 keV (complete energy deposition of incoming e⁻ in SDD)
- ▶ Silicon escape peak at *E*_I−1.74 keV
- ► Dead Layer → Smearing of peaks Reason: Incomplete charge collection
- ▶ Backscattering → Rising counts towards lower E_{dep}
 Reason: Incomplete energy deposition
- ▶ Silicon Dioxide Layer \rightarrow No effect on spectrum shape

Backscattering Energy Spectrum

- Small peak at $E_{\rm I} \cong$ Elastic scat. peak
- Dead Layer shifts maximal E_{BS} to lower energies
 Reason: Probably related to Geant4 Production Cut (tbi)
- Plateau $\hat{=}$ Inelastic scat. continuum
- ▶ 'True' secondary e^- peak at $E_{\rm BS} \le 50 \, {\rm eV}$
- At low energies: SiO2 Layer lowers amount of backscattered e⁻
 Reason: Lower atomic number of O

Experimental Motivation for threshold $E_{\rm BS} = 50 \,\text{eV}$: Primary e^- of lower energy \approx True secondary e^- of higher energy

Primary backscattering coefficient

- η decreases for increasing $E_{\rm I}$ and increases for increasing $\Theta_{\rm I}$
- > Only for low $E_{\rm I}$ the SiO2 layer leads to less backscattering of primaries

Secondary backscattering coefficient

- Same trends for δ like for η
- The Dead Layer does not affect backscattering (as expected)
- The SiO2 layer leads to less backscattering of secondaries (lower atomic number)

Spacial backscattering distribution

Setup 1

Setup 3

- Detectors: Implement energy resolution/noise, charge charing, etc. (alters the measured spectrum shape and count rate)
- E-Gun: Implement angular and energy spread of electron beam; Introduce acceleration field (influences *E*_I and Θ_I)
- Total Setup: Include vacuum chamber and other hardware (produces further scattering processes); Implement Earth magnetic field (influences electron beam line)
- **DAQ:** Introduce dead time, pile up, etc. (alters the count rate)

Step 2: Experimental Setup

BERTA - E-Gun

Step 2: Experimental Setup

BERTA - In-Vacuum Setup (so far)

Next Steps

- Finish setting up the detectors and DAQ
- Find optimal DAQ setting and calibrate system with Fe-55
- Develop a measurement and analysis plan
- ▶ Start with Step 3: Take first measurement with $E_{\rm I} = 10 \, \text{keV}$ and $\Theta_{\rm I} = 0^\circ$ in vacuum

Backup Slides

Spectral Distortion - Setup 3

 E_{dep} (keV)

- ▶ 7-Pixel SDD energy deposition: For higher Θ_I less counts at high E_{dep} and more at low E_{dep}
- \blacktriangleright Backscattering energy distribution: For higher $\Theta_{\rm I}$ more counts at high $E_{\rm BS}$ and low $E_{\rm BS}$

Normalized counts / 50 eV

 $E_{\rm BS}$ (keV)

Entrance Window Effects (Preliminary Results)

- The lower the average atomic number the lower δ ; No effect on η observed
- The thicker the layer the lower δ; No more change of δ for thickness > O(10 nm); No effect on η observed
- \blacktriangleright Same behaviour for varying incident angles Θ_{I}

Compare Geant4 Physics Lists

7-Pixel SDD Energy Spectrum

100 100 10^{-1} 10^{-1} 10^{-2} 10^{-2} 10^{-3} 10^{-3} 10^{-4} 10^{-4} LACOM MARCHINE 10⁻⁵-9.00 10^{-5} 0 00 0.25 0.50 0.75 925 950 9.75 10.00 1.00 100 Normalized counts / 10 eV Std StdSS Liv LowE Pene 10 10 ò ż à 6 8 E_{RS} (keV)

Backscattering Energy Spectrum

Backup Slides

Backscattering Characterization

Spreng, Daniela