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CHARGE CONJUGATION, PARITY  &  ANOMALIES
All crucial to developing our understanding of gauge theories  

All played an important historic role through studies of the strong and 

electromagnetic interactions 

This talk is about their intersection, namely anomalies of symmetries 

like charge conjugation and parity, and their consequences
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CHARGE CONJUGATION
Consider SU(N) gauge theory 

Charge conjugation interchanges a representation with its complex 

conjugate. It is an example of an outer automorphism of the gauge 

group. 

Isomorphism of G onto itself that can not be written in the form

1 Introduction

Charge conjugation symmetry—the interchanging of particles and antiparticles—plays a

central role in our understanding of the strong and electromagnetic interactions. It explains,

for example, why the neutral pion may decay into two photons, ⇡0
! 2�, but not three,

⇡0
6! 3�. Its violation in the weak interaction is a hallmark of the standard model; it

is at the same time tied to and guides proposed solutions to outstanding questions that

the standard model leaves unanswered, including the strong CP problem and the matter-

antimatter asymmetry of the universe.

The action of charge conjugation in gauge theories is an example of an outer auto-

morphism of the gauge group; see e.g. [1]. An outer automorphism of a group G is an

automorphism, i.e. an isomorphism of G onto itself, that can not be written in the form

g ! hgh�1, with some fixed h 2 G. The Lie algebra is mapped onto itself under an

automorphism such that the commutation relations are preserved. In general, the outer

automorphisms of a Lie algebra can be discerned from the symmetries of the corresponding

Dynkin diagram. Charge conjugation is the name reserved for the map that exchanges all

representations of the Lie algebra with their complex conjugates. Another example of an

outer automorphism is parity which acts by reversing the signs of certain components of

the vector representation; see e.g. [2].

In this paper we study subtleties and curiosities of outer automorphisms in gauge

theories, with a particular eye to how they behave in the quantum theory, namely, whether

or not they are anomalous. Anomalies also play a central role in our understanding of

quantum field theory (explaining, for example, the rate of ⇡0
! 2� decay [3, 4]). The ‘t

Hooft anomaly matching conditions [5] o↵er a rare and powerful non-perturbative probe

of strongly coupled dynamics. Another recent proposal by one of the present authors

(HM) uses anomaly-mediated supersymmetry breaking to give a controlled approximation

to probe non-supersymmetric strongly coupled systems [6–10]. The study of anomalies for

discrete gauge symmetries was pioneered in the works [11–17], with the ‘t Hooft matching

conditions for discrete symmetries studied in [15] by one of the authors (HM); the treatment

of outer automorphism anomalies was however missed, with the present work filling this

gap. For a modern take on discrete gauge anomalies from the viewpoint of symmetry

protected topological phases; see e.g. [18].

One example of a subtlety we encounter is the not widely known fact that in certain

cases there can be two inequivalent versions of charge conjugation. This issue was, to our

knowledge, only recently discussed in the literature, in the context of gauging principle

extensions of SU(N) gauge theories [19, 20]. We will see another example of this below

in the context of parities for the Spin(2r) symmetries. For the case of charge conjugation

in SU(N), for even N we can define both a symmetric and an anti-symmetric version

of charge conjugation. This gives rise to an apparent paradox in QCD, since the anti-

symmetric charge conjugation symmetry should forbid the expected chiral condensate that

dynamically breaks chiral symmetry. We will see the resolution to this paradox is that the

anti-symmetric version of charge conjugation symmetry is anomalous. The two versions

are shown explicitly to be related by a flavor transformation which explains the di↵erence
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PARITY
Similarly, parity is an outer automorphism that exchanges two 
inequivalent spinor reps of SO(2r) 

Isomorphism of G onto itself that can not be written in the form
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For some fixed

Take the example of SO(6) ' SU(4). For P1 = (+,�,�,�,�,�), the P-invariant

subgroup is SO(5) ' Sp(4). This is consistent with the charge conjugation of SU(4)

with CA. On the other hand, for P3 = (+,+,+,�,�,�), the P-invariant subgroup is

SO(3)⇥SO(3) ' SO(4). This is consistent with the charge conjugation of SU(4) with CS .

For general SO(2r), there are a wider variety of parities. We can study them by

constructing an explicit representation of Spin(2r)(the double cover of SO(2r))—we let

each �i be a tensor product of r Pauli matrices:

�1 = �1 ⌦ 1 ⌦ · · · ⌦ 1 ⌦ 1 ,

�2 = �2 ⌦ 1 ⌦ · · · ⌦ 1 ⌦ 1 ,

�3 = �3 ⌦ �1 ⌦ · · · ⌦ 1 ⌦ 1 ,

�4 = �3 ⌦ �2 ⌦ · · · ⌦ 1 ⌦ 1 ,
...

�2r�3 = �3 ⌦ �3 ⌦ · · · ⌦ �1 ⌦ 1 ,

�2r�2 = �3 ⌦ �3 ⌦ · · · ⌦ �2 ⌦ 1 ,

�2r�1 = �3 ⌦ �3 ⌦ · · · ⌦ �3 ⌦ �1 ,

�2r = �3 ⌦ �3 ⌦ · · · ⌦ �3 ⌦ �2 ,

�2r+1 = �3 ⌦ �3 ⌦ · · · ⌦ �3 ⌦ �3 .

(4.2)

The last one �2r+1 plays the role of �5 in case of 2r = 4 — one can readily verify

�2r+1 = (�i)r�1 �2 · · · �2r�1 �2r . (4.3)

It is easy to check the gamma matrices in Eq. (4.2) satisfy the Cli↵ord algebra {�i, �j} = 2�ij
for Spin(2r). The so(2r) Lie algebra is then generated by

1

2
�ij =

i

4
[�i, �j ] . (4.4)

Spin(2r) groups extended to include the parity are called Pin(2r), removing “S” that stands

for “Special” for unit determinant to allow for determinant of �1, as a joke attributed to

Jean-Pierre Serre.

In this convention, all �2n�1 are symmetric while �2n are anti-symmetric. It is natural

to separate them into two separate groups and define parities accordingly. In what follows,

we show this explicitly for the cases of even r = 2k and odd r = 2k + 1 separately.
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e.g. for 

is the element of O(6)



We can see it very explicitly. We require charge conjugation to be:

1. Linear 
2. Unitary 
3. C^2 = 1 (up to a phase) 
4. Compatible with SU(N)

CHARGE CONJUGATION



CHARGE CONJUGATION
Charge conjugation works on the direct sum of fundamental and anti-fundamental reps              . 

(Action on other irreps specified as they are are tensor products of these) 

1. Linear

representation. The symmetry group is then the semi-direct product SU(N) o C; see

e.g. for its application in QCD chiral Lagrangian. Here we demonstrate that there is a

unique definition of charge conjugation for SU(N) with odd N up to basis changes, but

there are two inequivalent definitions of charge conjugation for SU(N) with even N . This

point is consistent with the papers [19, 20] where they discussed gauging the principal

extension SU(N)o C. Here we present the discussion which is very concrete compared to

previous literature.3 Our result confirms the argument in the previous section 2 that the

C-invariant subgroup under charge conjugation is either SO(N) or Sp(N) if N is even.

3.1 Requirements

The charge conjugation is an operation that interchanges the fundamental representation

and the anti-fundamental representation which has the following properties:

1. linear

2. unitary

3. C
2 = 1

4. compatible with SU(N)

We will see below concrete realizations of these requirements.

3.2 Fundamental and Anti-Fundamental Representations

We start with the fundamental representation N of SU(N). It is a complex representation

and the charge conjugation is not closed within this representation. The charge conjugation

works on the direct sum N�N, and because it interchanges N and N and is linear, it can

be written as

C

 
N

N

!
=

 
0 C�
C+ 0

! 
N

N

!
. (3.1)

Here, C± are N by N matrices. Strictly speaking, the matrix C here is a representation

matrix of the abstract operation C on N�N, but we accept the abuse of notation. Once

the matrix C is specified on N �N, it can be generalized to any other representations of

SU(N) because they are all obtained by tensor products of N and N.

The unitarity requirement is

C
†
C =

 
0 C†

+

C†
� 0

! 
0 C�
C+ 0

!
= 1 . (3.2)

Namely,

C†
�C� = C†

+C+ = 1 , (3.3)

3The anomalies associated with charge conjugation was incorrectly dismissed in [15]
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3. C^2 = 1 *

write

and hence C± are unitarity. On the other hand, it also needs to square to unity,

C
2 =

 
0 C�
C+ 0

! 
0 C�
C+ 0

!
= 1 , (3.4)

and hence

C�C+ = C+C� = 1 , (3.5)

or

C� = C�1
+ = C†

+ . (3.6)

We henceforth use the notation C+ = C and C� = C†. We will also use the tensor

notation where the fundamental representation comes with an upper index, and the anti-

fundamental representation with a lower index. Then the matrix C has indices Cij while

the inverse matrix (C†)ij .

Now we discuss the compatibility with SU(N), which means for any g 2 SU(N), CgC

must also be an element of SU(N). Focusing on unitary representations, any element of

g 2 SU(N) can be represented on N�N as

U(g)

 
N

N

!
=

 
eiT

a!a
0

0 V †e�iTaT!a
V

! 
N

N

!
. (3.7)

Here T a are traceless hermitian matrices forming the fundamental representation of the

su(N) Lie algebra and !a are real parameters. The anti-fundamental representation should

be equivalent to
�
eiT

a!a�⇤
= e�iTaT!a

up to a unitary transformation V ,4 which can be

set to 1 without loss of generality by further changing the basis for the anti-fundamental
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* up to phase



CHARGE CONJUGATION
4. Compatible with SU(N) 

<latexit sha1_base64="R7lSFnIiT5Syg2X7JTSO7tUoYxE=">AAACBXicbVA9SwNBEJ3zM8avU0stFoMQm3AnojZCMIWWEb0kkISwt9kkS/b2jt09IRxpbPwrNhaK2Pof7Pw37iVXaOKDhcd7Mzszz484U9pxvq2FxaXlldXcWn59Y3Nr297ZrakwloR6JOShbPhYUc4E9TTTnDYiSXHgc1r3h5XUrz9QqVgo7vUoou0A9wXrMYK1kTr2wTW6RHdeURy3pGYBVagVYD0gmCeVcccuOCVnAjRP3IwUIEO1Y3+1uiGJAyo04VipputEup1g8zXhdJxvxYpGmAxxnzYNFdgMbCeTK8boyChd1AuleUKjifq7I8GBUqPAN5XpimrWS8X/vGasexfthIko1lSQ6aBezJEOURoJ6jJJieYjQzCRzOyKyABLTLQJLm9CcGdPnie1k5J7VnJuTwvlqyyOHOzDIRTBhXMoww1UwQMCj/AMr/BmPVkv1rv1MS1dsLKePfgD6/MHsIuXdA==</latexit>

G = SU(n)o C where SU(N) is normal subgroup:
<latexit sha1_base64="lgLvPk9D6TO+ao76ckxe0zQfhNA=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksQoVaEhH1WPTiSSqattDEstlu2qWbTdjdCCXk4l/x4kERr/4Mb/4bt20O2vpg4PHeDDPz/JhRqSzr2ygsLC4trxRXS2vrG5tb5vZOU0aJwMTBEYtE20eSMMqJo6hipB0LgkKfkZY/vBr7rUciJI34vRrFxAtRn9OAYqS01DX3+tCtDtxq/yE9tjPoUg7vnMrNUdcsWzVrAjhP7JyUQY5G1/xyexFOQsIVZkjKjm3FykuRUBQzkpXcRJIY4SHqk46mHIVEeunkgQweaqUHg0jo4gpO1N8TKQqlHIW+7gyRGshZbyz+53USFVx4KeVxogjH00VBwqCK4DgN2KOCYMVGmiAsqL4V4gESCCudWUmHYM++PE+aJzX7rGbdnpbrl3kcRbAPDkAF2OAc1ME1aAAHYJCBZ/AK3own48V4Nz6mrQUjn9kFf2B8/gB/z5Rq</latexit>

g h g�1 2 SU(N)

for 
<latexit sha1_base64="db/whQbBDJzWjhDy54OpJjGBl0M=">AAAB8XicbVBNSwMxEJ34WetX1aOXYBHqpeyKqMeiF09S0W2L7VKyabYNzWaXJCuUpf/CiwdFvPpvvPlvTNs9aOuDgcd7M8zMCxLBtXGcb7S0vLK6tl7YKG5ube/slvb2GzpOFWUejUWsWgHRTHDJPMONYK1EMRIFgjWD4fXEbz4xpXksH8woYX5E+pKHnBJjpcdBh0t871VuT7qlslN1psCLxM1JGXLUu6WvTi+macSkoYJo3XadxPgZUYZTwcbFTqpZQuiQ9FnbUkkipv1sevEYH1ulh8NY2ZIGT9XfExmJtB5Fge2MiBnoeW8i/ue1UxNe+hmXSWqYpLNFYSqwifHkfdzjilEjRpYQqri9FdMBUYQaG1LRhuDOv7xIGqdV97zq3J2Va1d5HAU4hCOogAsXUIMbqIMHFCQ8wyu8IY1e0Dv6mLUuoXzmAP4Aff4AHTGP5Q==</latexit>

h 2 SU(N)
<latexit sha1_base64="v0uvI8oe9MXjuVhEiNO3qeuQ8ek=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0WoUksioi6L3biSiqYtNLFMppN26GQSZiZCCf0HN/6KGxeKuHXjzr9x2mZRqwcGzpxzL/fe48eMSmVZ30ZuYXFpeSW/Wlhb39jcMrd3GjJKBCYOjlgkWj6ShFFOHEUVI61YEBT6jDT9QW3sNx+IkDTid2oYEy9EPU4DipHSUsc8ckOk+hixtDZyy323PPO/T4/tEXQph7dO6fqwYxatijUB/EvsjBRBhnrH/HK7EU5CwhVmSMq2bcXKS5FQFDMyKriJJDHCA9QjbU05Con00slNI3iglS4MIqEfV3CiznakKJRyGPq6cryxnPfG4n9eO1HBhZdSHieKcDwdFCQMqgiOA4JdKghWbKgJwoLqXSHuI4Gw0jEWdAj2/Ml/SeOkYp9VrJvTYvUyiyMP9sA+KAEbnIMquAJ14AAMHsEzeAVvxpPxYrwbH9PSnJH17IJfMD5/AEffnRw=</latexit>

C h C�1 2 SU(N)

• for even N , we have two cases:

– CT = C and C2 = +1: this defines a group we call fSU
(I)
(N).

– CT = �C and C2 = �1: this defines a group we call fSU
(II)

(N).

Furthermore, in either case of fSU
(I)
(N) or fSU

(II)
(N), C can be written as

C =

✓
0 C⇤

C 0

◆
, (2.33)

which is consistent with the following intuitive transformation laws

�
C���! C�⇤ , (2.34)

�⇤ C���! C⇤� . (2.35)

Actually, this is a generalization of U(1) case, which is so-called C-patiry 2.
If we regard C as a phase, this is nothing but C-parity. In SU(N) case, � is
N component vector, so it’s number in U(1) case.

In the case of doublets of SU(2) such as Higgs H, lepton L or quark Q,
twice the charge conjugation is �1. Let us look at the charge conjugation of
Higgs doublets. They can transform in two inequivalent ways:

H =

✓
�+

�0

◆
C���!

✓
�0⇤

��+⇤

◆
or

✓
�+⇤

�0⇤

◆
. (2.36)

3 Hilbert Series

I think this part is to be in appendix. In this section, we briefly review the
Hilbert series technology. For the detail, you can consult to the following
references [4, 5, 6].

3.1 The integral formula for the Hilbert series

The Hilbert series which enumerates Lorentz and gauge invariant operators
modulo Equation of motion(EOM) and Integral by part (IBP) is

H0({�i},D) =

Z
dµLorentz(x)

Z
dµgauge(y)

1

P (D, x)

Y

i

Z(�i,D, x, y). (3.1)

2https://en.wikipedia.org/wiki/C parity
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Under unitary transform

INVARIANT SUBGROUPS

Invar. subgroup of SU(N) under C

Using SU(N) transforms and using unitarity condition, we can write 

is SO(N)

<latexit sha1_base64="6wgXWDgnAJfaYpt4QcWrq0AW5Hg="></latexit>

C0 =

✓
U 0
0 U⇤

◆✓
0 C⇤

C 0

◆✓
U † 0
0 UT

◆
=

✓
0 UC⇤UT

U⇤CU† 0

◆

<latexit sha1_base64="27g04gxn6zBZLYFQrYCSmMTFWyA=">AAACBHicbVDJSgNBEO2JW4xb1GMujUHwFGZE1IsQzMVjBLNAMoaeTk3SpGehu0YIwxy8+CtePCji1Y/w5t/YWQ6a+KDg8V4VVfW8WAqNtv1t5VZW19Y38puFre2d3b3i/kFTR4ni0OCRjFTbYxqkCKGBAiW0YwUs8CS0vFFt4rceQGkRhXc4jsEN2CAUvuAMjdQrlmr0isJ9KmgXh4Aso92A4dDzUyfrFct2xZ6CLhNnTspkjnqv+NXtRzwJIEQumdYdx47RTZlCwSVkhW6iIWZ8xAbQMTRkAWg3nT6R0WOj9KkfKVMh0qn6eyJlgdbjwDOdkwv1ojcR//M6CfqXbirCOEEI+WyRn0iKEZ0kQvtCAUc5NoRxJcytlA+ZYhxNbgUTgrP48jJpnlac84p9e1auXs/jyJMSOSInxCEXpEpuSJ00CCeP5Jm8kjfryXqx3q2PWWvOms8ckj+wPn8AWjGXSw==</latexit>

C = ei✓1

<latexit sha1_base64="OkNMDcZ2qkyeVhYLDsl5hSuYwEU="></latexit>

C = ei✓1 = C 0 = U⇤CU† = U⇤ei✓U† =) UTU = 1

<latexit sha1_base64="DAm9FxeHZ96OVnEoOU7inEJm++8=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiiouSiKgbodiNywr2AW0sk8kkHTp5MDMRSuzCX3HjQhG3/oY7/8Zpm4W2HriXwzn3MneOm3AmlWV9G4WFxaXlleJqaW19Y3PL3N5pyjgVhDZIzGPRdrGknEW0oZjitJ0IikOX05Y7qI391gMVksXRnRom1AlxEDGfEay01DP3akfoCiHUuD9BNd27Hg4CKnpm2apYE6B5YuekDDnqPfOr68UkDWmkCMdSdmwrUU6GhWKE01Gpm0qaYDLAAe1oGuGQSieb3D9Ch1rxkB8LXZFCE/X3RoZDKYehqydDrPpy1huL/3mdVPmXTsaiJFU0ItOH/JQjFaNxGMhjghLFh5pgIpi+FZE+FpgoHVlJh2DPfnmeNE8r9nnFuj0rV6/zOIqwDwdwDDZcQBVuoA4NIPAIz/AKb8aT8WK8Gx/T0YKR7+zCHxifP/6Sk4w=</latexit>

C 0 = U⇤CU†

C of SU(N)

P of SO(2r)
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P = (+,�,�, . . . ,�)

Invar. subgroup of SO(2r) under P
is SO(2r-1)



We will need these C-invariant   and P-invariant subgroups 

CHARGE CONJUGATION
SO(N) SO(2r-1)

C is non-anomalous under SU(N). For the N = 2 SQCD theories in four dimensions that

these works focused on, C is guaranteed to be non-anomalous. But for a more general

construction, this constraint needs to be considered. Furthermore, we have shown that

the technique introduced in [20] of finding possible principle extensions of the gauge group

G = SU(N) via the Cartan classification of symmetric spaces does not work for the case

G = SO(2k).

There are possible future directions concerning outer automorphisms. In topological

insulators, the boundary states may be Majorana fermion. The presence of such a state is

protected by topology. It would be interesting to see if it has a connection to anomalies

under charge conjugation. If the bulk theory is anomalous under charge conjugation, it

needs to be accompanied by edge states that cancel the anomaly. It may provide an

alternative argument for topologically protected states. See a related discussion concerning

time reversal in [31].

We restricted the background gauge fields to configurations that are invariant under

the outer automorphisms to study well-defined transformation properties of path integral

measures. It would be also interesting to see if this restriction can be relaxed. We briefly

discussed di�culties associated with such an e↵ort in the appendix.

We believe our paper is only the beginning of studies of outer automorphism anomalies.
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A Non-Self-Conjugate Gauge Fields

In this paper, we studied anomalies associated with outer automorphisms by restricting

to the gauge field configurations (both for the dynamical gauge field and those associated

with weakly gauged global symmetries with spectators) that are self-conjugate (invariant)

under the outer automorphism. This is because the question whether

Z
D D ̄ exp


i

Z
dx  ̄ i /D(A) 

�
C

�! ±

Z
D D ̄ exp


i

Z
dx  ̄ i /D(A) 

�
, (A.1)
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as we will consider self-conjugate gauge field configurations

Its enough to prove symmetry is anomalous, if there is a phase 

One obtains non-trivial anomaly matching consistency checks

We haven’t generalized to understand 

due to the property of the measure is a well-defined question we could study by working

out eigenvalues under outer automorphism for each eigenmode of the Dirac operator. How-

ever, one may wonder if stronger constraints can be obtained by considering gauge field

configurations that are not self-conjugate configurations.

Obviously for such not self-conjugate gauge fields, we are looking at

Z
D D ̄ exp


i

Z
dx  ̄ i /D(A) 

�
C

�! ±

Z
D D ̄ exp


i

Z
dx  ̄ i /D(AC) 

�
, (A.2)

where AC is the charge-conjugated gauge field. The question then is what happens when

AC is deformed smoothly back to A. If we perfectly understand the spectral flow, namely

the continuous change of the eigenvalues of the Dirac operator for At = (1� t)AC + tA, we

can probably extend the discussion to non-self-conjugate gauge field configurations. This

is beyond the scope of this paper.
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Nf quark fields as left-handed Weyl fermions:

C IN QCD-LIKE THEORIES
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In the case of SO(8), there is a very special triality S3 outer automorphism as discussed

in Sec. 2. It interchanges the vector and two inequivalent spinor representations. The C-

invariant subgroup is G2 under which the vector and spinor representations decompose as

8 = 7� 1 while the adjoint as 28 = 14� 7� 7.

For the outer automorphisms of E6 and the triality of SO(8), we are not aware of

well-established examples of gauge theories where we can study their anomalies.
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!
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Under the charge conjugation Eq. (3.8), or more specifically

q ! C†q̃ , (6.2a)

q̃ ! Cq , (6.2b)

it is guaranteed that this Lagrangian is invariant, if the gauge field is also transformed as
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µC . (6.3)

Note that this is the classical invariance of the Lagrangian. It remains to be seen whether

it is respected at the quantum level, or in other words, whether the charge conjugation is

anomalous.
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SU(N) gauge theory
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Seiberg duality

SU(N) U(1)R SU(F )Q SU(F )Q̃

W↵ adj +1 1 1

Q 1� N
F 1

Q̃ 1� N
F 1

Table 1. Quantum numbers of fields in the electric SU(N) SQCD.

SU(F �N) U(1)R SU(F )Q SU(F )Q̃

W↵ adj +1 1 1

q 1� Ñ
F 1

q̃ 1� Ñ
F 1

M = Q̃Q 1 2� 2N
F

Table 2. Quantum numbers of fields in the magnetic SU(Ñ) (Ñ = F �N) SQCD.

it was argued that we can take the smallest charge in the particle content of the theory.

There is a caveat, however. In principle, some of the heavy states that are integrated out

in the IR limit may have charge fractionalization. In this case the minimum unit of the

U(1) charges may become smaller, leading to weaker constraints.

Similarly, any abelian discrete symmetries can be embedded into U(1)s and we can

consider triangle anomalies for U(1) factors, and require that they match modulo the least

common multiple among the relevant N ’s. In addition, when the relevant N ’s are all even,

there is an important consideration. For ZN1 = Z2k1 , ZN2 = Z2k2 , and ZN3 = Z2k3 , it is

possible that a state transforms by �1 under all of the discrete symmetries (namely charge

(k1, k2, k3)) so that it is allowed to have a Majorana mass and decouples, thereby shifting

the anomaly by k1k2k3 =
1
8N1N2N3. In particular, it implies that there are no constraints

considering Z3
2 anomalies because they can be shifted by 1 (see e.g. [11, 13, 17]). This case

is subject to the same caveat about charge fractionalization.

In the later sections, we consider both Type-I and Type-II anomalies. They all match

when they should, namely when the discrete symmetries are respected by the ground states.

7.2 Seiberg Duality

The Seiberg duality in SU(N) gauge theories [21] states that electric and magnetic SU(Ñ)

(Ñ = F �N) theories in Tables 1 and 2 are equivalent in the IR limit. The electric theory

does not have a superpotential, while the magnetic theory has the superpotential

W =
1

µ
M ij q̃iqj . (7.1)
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Q $ Q̃

Again consider anomalies associated with subgroup

The meson field in the magnetic theory is matched to the composite in the electric theory

as

M ij = Q̃iQj . (7.2)

It is highly non-trivial that the continuous symmetry anomalies (grav)2U(1)R, U(1)3R,

U(1)RSU(F )2Q, U(1)RSU(F )2
Q̃
all match between the two theories.

In the following, we will investigate the discrete anomaly matching conditions associ-

ated with the charge conjugation CS and CA. As explained in Secs. 3 and 6, CS generally

exists and is also non-anomalous. On the other hand, CA exists only for even N and it is

non-anomalous only for even F .

CSSU(F )
2
C anomaly matching

The charge conjugation CS interchanges Q and Q̃ fields and hence does not commute

with SU(F )Q or SU(F )Q̃. Therefore, it is not clear how to study the anomalies such as

CSSU(F )2Q or CSSU(F )2
Q̃
. Instead, we study the anomaly CSSU(F )2C , where SU(F )C is

the diagonal subgroup SU(F )C ⇢ SU(F )Q ⇥ SU(F )Q̃ that commutes with CS .8

Let us first look at this anomaly in the electric theory. The gaugino field � in W↵ is

a singlet under SU(F )C , so it does not contribute. The quark and anti-quark fields Q, Q̃

both have N zero modes under the instanton of SU(F )C . Since Q and Q̃ are interchanged,

the linear combinations Q± Q̃ are even and odd eigenstates under CS respectively. There-

fore, their contributions to the CSSU(F )2C anomaly is N tr
�
tatb

�
= N 1

2�
ab, where ta are

generators of SU(F )C in the fundamental representation.

Similarly in the magnetic theory, the CSSU(F )2C anomaly receives a contribution

Ñ tr
�
tatb

�
= Ñ 1

2�
ab from magnetic quark and anti-quark fields q, q̃. In addition, there

is a contribution from the meson field M , which transforms as M ! UMUT under el-

ements in the diagonal subgroup U 2 SU(F )C . Clearly, M decomposes into symmetric

(MT = M) and antisymmetric MT = �M representations. Under CS , Q and Q̃ fields

are interchanged in the electric theory, and correspondingly in the magnetic theory the

meson field M is transposed. Obviously, the anomaly receives contributions only from the

antisymmetric representation. The contribution is tr
�
taasymt

b
asym

�
= (F � 2)12�

ab.

Altogether, the anomalies do match between the electric and magnetic theories:

N = Ñ + (F � 2) mod 2 . (7.3)

CSU(1)
2
R anomaly matching

One can also study the CSU(1)2R anomalies. Since the R-charges are fractional, we use

the R-charge normalized in the unit of 1/F . The gaugino field � in W↵ forms an adjoint

representation of the gauge field SU(N), which decomposes into and representations

of its CS-invariant subgroup SO(N). Since the gaugino field transforms as � ! ��T

8Note that the common convention is that Q is in the fundamental representation under SU(F )Q and

Q̃ is anti-fundamental under SU(F )Q̃, but this is not our convention here. For our convenience, we choose

the definition of SU(F )Q̃ such that Q̃ is fundamental under SU(F )Q̃. In this way, Q and Q̃ are on equal

footing under the flavor symmetries; e.g. they are in the same representation under the diagonal subgroup

SU(F )C .
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U(1)RSU(F )2Q, U(1)RSU(F )2
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all match between the two theories.

In the following, we will investigate the discrete anomaly matching conditions associ-

ated with the charge conjugation CS and CA. As explained in Secs. 3 and 6, CS generally

exists and is also non-anomalous. On the other hand, CA exists only for even N and it is

non-anomalous only for even F .
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with SU(F )Q or SU(F )Q̃. Therefore, it is not clear how to study the anomalies such as

CSSU(F )2Q or CSSU(F )2
Q̃
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Let us first look at this anomaly in the electric theory. The gaugino field � in W↵ is

a singlet under SU(F )C , so it does not contribute. The quark and anti-quark fields Q, Q̃

both have N zero modes under the instanton of SU(F )C . Since Q and Q̃ are interchanged,

the linear combinations Q± Q̃ are even and odd eigenstates under CS respectively. There-

fore, their contributions to the CSSU(F )2C anomaly is N tr
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ab, where ta are

generators of SU(F )C in the fundamental representation.
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is a contribution from the meson field M , which transforms as M ! UMUT under el-

ements in the diagonal subgroup U 2 SU(F )C . Clearly, M decomposes into symmetric

(MT = M) and antisymmetric MT = �M representations. Under CS , Q and Q̃ fields

are interchanged in the electric theory, and correspondingly in the magnetic theory the

meson field M is transposed. Obviously, the anomaly receives contributions only from the

antisymmetric representation. The contribution is tr
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taasymt

b
asym
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ab.

Altogether, the anomalies do match between the electric and magnetic theories:
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One can also study the CSU(1)2R anomalies. Since the R-charges are fractional, we use

the R-charge normalized in the unit of 1/F . The gaugino field � in W↵ forms an adjoint

representation of the gauge field SU(N), which decomposes into and representations

of its CS-invariant subgroup SO(N). Since the gaugino field transforms as � ! ��T

8Note that the common convention is that Q is in the fundamental representation under SU(F )Q and

Q̃ is anti-fundamental under SU(F )Q̃, but this is not our convention here. For our convenience, we choose

the definition of SU(F )Q̃ such that Q̃ is fundamental under SU(F )Q̃. In this way, Q and Q̃ are on equal

footing under the flavor symmetries; e.g. they are in the same representation under the diagonal subgroup
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It is highly non-trivial that the continuous symmetry anomalies (grav)2U(1)R, U(1)3R,
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N = Ñ + (F � 2) mod 2 . (7.3)

CSU(1)
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R anomaly matching

One can also study the CSU(1)2R anomalies. Since the R-charges are fractional, we use

the R-charge normalized in the unit of 1/F . The gaugino field � in W↵ forms an adjoint

representation of the gauge field SU(N), which decomposes into and representations

of its CS-invariant subgroup SO(N). Since the gaugino field transforms as � ! ��T

8Note that the common convention is that Q is in the fundamental representation under SU(F )Q and

Q̃ is anti-fundamental under SU(F )Q̃, but this is not our convention here. For our convenience, we choose

the definition of SU(F )Q̃ such that Q̃ is fundamental under SU(F )Q̃. In this way, Q and Q̃ are on equal

footing under the flavor symmetries; e.g. they are in the same representation under the diagonal subgroup

SU(F )C .
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der charge conjugation, L and R switches, and the C-invariant subgroup is the diagonal

subgroup SU(F )C . Note that this is not the usual SU(F )V where VL = VR. To correctly

identify the C-invariant subgroup of the flavor symmetry, we need to treat the relevant fields

on an equal footing. Therefore we need to take the charge conjugation6 of the right-handed

quarks and treat them as left-handed anti-quarks in the anti-fundamental representation of

the color group. Then under the C-invariant subgroup SO(N) of the gauge group, quarks

in N and anti-quarks in N are interchanged under CS . The anti-quark field transforms by

V ⇤
R, and the C-invariant subgroup SU(F )C is defined by VL = V ⇤

R. The mesons decompose

as a symmetric tensor and an anti-symmetric tensor representation of SU(F )C , and

they transform with opposite signs under the charge conjugation.

For the other charge conjugation CA for SU(2k), we apply the same consideration to the

C-invariant subgroup Sp(2k). We decompose each SU(2k) representations to irreducible

representations of Sp(2k), and assign signs to each of them appropriately. For example, an

adjoint representation of SU(2k) decomposes into a symmetric tensor and a traceless

anti-symmetric tensor representation of Sp(2k), and they transform with opposite signs

under the charge conjugation. As another example, the rank-k antisymmetric tensor of

SU(2k) decomposes into Sp(2k) as

• � � � · · · �

...

for k even (with the final column consisting of k boxes) and

� � � · · · �

...

for k odd (with the final column again consisting of k boxes); the representations in the

above sums transform with alternating sign under charge conjugation.

4 Parities for General SO(2r)

As discussed in Sec. 2, SO(2r) in general can have “parity” defined in a way to break the

symmetry to SO(q)⇥ SO(2r� q) with q odd. Namely the parity is defined by an element

of O(2r),

Pq = diag(+, · · · ,+| {z }
q

,�, · · · ,�| {z }
2r�q

) . (4.1)

6This is the charge conjugation in textbooks for Dirac fields  !  c = �i�0�2 ̄T .
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Table 1. Quantum numbers of fields in the electric SU(N) SQCD.
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W↵ adj +1 1 1

q 1� Ñ
F 1

q̃ 1� Ñ
F 1

M = Q̃Q 1 2� 2N
F

Table 2. Quantum numbers of fields in the magnetic SU(Ñ) (Ñ = F �N) SQCD.

it was argued that we can take the smallest charge in the particle content of the theory.

There is a caveat, however. In principle, some of the heavy states that are integrated out

in the IR limit may have charge fractionalization. In this case the minimum unit of the

U(1) charges may become smaller, leading to weaker constraints.

Similarly, any abelian discrete symmetries can be embedded into U(1)s and we can

consider triangle anomalies for U(1) factors, and require that they match modulo the least

common multiple among the relevant N ’s. In addition, when the relevant N ’s are all even,

there is an important consideration. For ZN1 = Z2k1 , ZN2 = Z2k2 , and ZN3 = Z2k3 , it is

possible that a state transforms by �1 under all of the discrete symmetries (namely charge

(k1, k2, k3)) so that it is allowed to have a Majorana mass and decouples, thereby shifting

the anomaly by k1k2k3 =
1
8N1N2N3. In particular, it implies that there are no constraints

considering Z3
2 anomalies because they can be shifted by 1 (see e.g. [11, 13, 17]). This case

is subject to the same caveat about charge fractionalization.

In the later sections, we consider both Type-I and Type-II anomalies. They all match

when they should, namely when the discrete symmetries are respected by the ground states.

7.2 Seiberg Duality

The Seiberg duality in SU(N) gauge theories [21] states that electric and magnetic SU(Ñ)

(Ñ = F �N) theories in Tables 1 and 2 are equivalent in the IR limit. The electric theory

does not have a superpotential, while the magnetic theory has the superpotential

W =
1

µ
M ij q̃iqj . (7.1)
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SU(N) U(1)R SU(F )Q SU(F )Q̃

W↵ adj +1 1 1

Q 1� N
F 1

Q̃ 1� N
F 1

Table 1. Quantum numbers of fields in the electric SU(N) SQCD.

SU(F �N) U(1)R SU(F )Q SU(F )Q̃

W↵ adj +1 1 1

q 1� Ñ
F 1

q̃ 1� Ñ
F 1

M = Q̃Q 1 2� 2N
F

Table 2. Quantum numbers of fields in the magnetic SU(Ñ) (Ñ = F �N) SQCD.
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Electric SU(N) Magnetic SU(F-N)

Charge conjugation interchanges
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Q $ Q̃

Again consider anomalies associated with subgroup

The meson field in the magnetic theory is matched to the composite in the electric theory

as

M ij = Q̃iQj . (7.2)

It is highly non-trivial that the continuous symmetry anomalies (grav)2U(1)R, U(1)3R,

U(1)RSU(F )2Q, U(1)RSU(F )2
Q̃
all match between the two theories.

In the following, we will investigate the discrete anomaly matching conditions associ-

ated with the charge conjugation CS and CA. As explained in Secs. 3 and 6, CS generally

exists and is also non-anomalous. On the other hand, CA exists only for even N and it is

non-anomalous only for even F .

CSSU(F )
2
C anomaly matching

The charge conjugation CS interchanges Q and Q̃ fields and hence does not commute

with SU(F )Q or SU(F )Q̃. Therefore, it is not clear how to study the anomalies such as

CSSU(F )2Q or CSSU(F )2
Q̃
. Instead, we study the anomaly CSSU(F )2C , where SU(F )C is

the diagonal subgroup SU(F )C ⇢ SU(F )Q ⇥ SU(F )Q̃ that commutes with CS .8

Let us first look at this anomaly in the electric theory. The gaugino field � in W↵ is

a singlet under SU(F )C , so it does not contribute. The quark and anti-quark fields Q, Q̃

both have N zero modes under the instanton of SU(F )C . Since Q and Q̃ are interchanged,

the linear combinations Q± Q̃ are even and odd eigenstates under CS respectively. There-

fore, their contributions to the CSSU(F )2C anomaly is N tr
�
tatb

�
= N 1

2�
ab, where ta are

generators of SU(F )C in the fundamental representation.

Similarly in the magnetic theory, the CSSU(F )2C anomaly receives a contribution

Ñ tr
�
tatb

�
= Ñ 1

2�
ab from magnetic quark and anti-quark fields q, q̃. In addition, there

is a contribution from the meson field M , which transforms as M ! UMUT under el-

ements in the diagonal subgroup U 2 SU(F )C . Clearly, M decomposes into symmetric

(MT = M) and antisymmetric MT = �M representations. Under CS , Q and Q̃ fields

are interchanged in the electric theory, and correspondingly in the magnetic theory the

meson field M is transposed. Obviously, the anomaly receives contributions only from the

antisymmetric representation. The contribution is tr
�
taasymt

b
asym

�
= (F � 2)12�

ab.

Altogether, the anomalies do match between the electric and magnetic theories:

N = Ñ + (F � 2) mod 2 . (7.3)

CSU(1)
2
R anomaly matching

One can also study the CSU(1)2R anomalies. Since the R-charges are fractional, we use

the R-charge normalized in the unit of 1/F . The gaugino field � in W↵ forms an adjoint

representation of the gauge field SU(N), which decomposes into and representations

of its CS-invariant subgroup SO(N). Since the gaugino field transforms as � ! ��T

8Note that the common convention is that Q is in the fundamental representation under SU(F )Q and

Q̃ is anti-fundamental under SU(F )Q̃, but this is not our convention here. For our convenience, we choose

the definition of SU(F )Q̃ such that Q̃ is fundamental under SU(F )Q̃. In this way, Q and Q̃ are on equal

footing under the flavor symmetries; e.g. they are in the same representation under the diagonal subgroup

SU(F )C .
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Anomalies match (would have been a huge surprise if not! But 

its nevertheless a new, non-trivial check)

IR ANOMALY MATCHING

that commutes with C such that 

der charge conjugation, L and R switches, and the C-invariant subgroup is the diagonal

subgroup SU(F )C . Note that this is not the usual SU(F )V where VL = VR. To correctly

identify the C-invariant subgroup of the flavor symmetry, we need to treat the relevant fields

on an equal footing. Therefore we need to take the charge conjugation6 of the right-handed

quarks and treat them as left-handed anti-quarks in the anti-fundamental representation of

the color group. Then under the C-invariant subgroup SO(N) of the gauge group, quarks

in N and anti-quarks in N are interchanged under CS . The anti-quark field transforms by

V ⇤
R, and the C-invariant subgroup SU(F )C is defined by VL = V ⇤

R. The mesons decompose

as a symmetric tensor and an anti-symmetric tensor representation of SU(F )C , and

they transform with opposite signs under the charge conjugation.

For the other charge conjugation CA for SU(2k), we apply the same consideration to the

C-invariant subgroup Sp(2k). We decompose each SU(2k) representations to irreducible

representations of Sp(2k), and assign signs to each of them appropriately. For example, an

adjoint representation of SU(2k) decomposes into a symmetric tensor and a traceless

anti-symmetric tensor representation of Sp(2k), and they transform with opposite signs

under the charge conjugation. As another example, the rank-k antisymmetric tensor of

SU(2k) decomposes into Sp(2k) as

• � � � · · · �

...

for k even (with the final column consisting of k boxes) and

� � � · · · �

...

for k odd (with the final column again consisting of k boxes); the representations in the

above sums transform with alternating sign under charge conjugation.

4 Parities for General SO(2r)

As discussed in Sec. 2, SO(2r) in general can have “parity” defined in a way to break the

symmetry to SO(q)⇥ SO(2r� q) with q odd. Namely the parity is defined by an element

of O(2r),

Pq = diag(+, · · · ,+| {z }
q

,�, · · · ,�| {z }
2r�q

) . (4.1)

6This is the charge conjugation in textbooks for Dirac fields  !  c = �i�0�2 ̄T .
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SPONTANEOUS BREAKING OF C, P
Two N=1 SUSY theories

two run-away directions correspond to Z4/Z2 while the charge conjugation is unbroken.

When two signs are the opposite, namely (+,�) or (�,+), the meson dependence

cancels exactly in the superpotential, and we have a moduli space of vacua. In this case,

the charge conjugation is spontaneously broken and hence there are two ground states; one

can even have domain walls (probably BPS). The order parameter of charge conjugation

(or equivalent parity) breaking is

h✏abcdef ✏
↵�W ab

↵ W bc
� �e

i�
f
j ✏

ij
i 6= 0 , (8.3)

where a, b, c, d, e, f = 1, · · · , 6 are the SO(6) indices, as shown in [15].9 In fact, the anomaly

matching for the charge conjugation fails in this case, as shown in Table 12. These two

vacua correspond to C ⇥ Z4/Z4 where the generator of the unbroken Z4 is embedded as

(�,!) 2 C ⇥ Z4 with ! = i.

8.2 SU(6) with one rank-three anti-symmetric tensor

The second example is SU(6) with one rank-three anti-symmetric tensor Aijk. The field

representations are summarized in Table 13. Since this is a pseudo-real representation,

there is no A2 invariant; the lowest invariant is A4. Along the D-flat direction, it breaks

SU(6) to SU(3)1 ⇥ SU(3)2 with the matching condition

⇤9
3 = ±

⇤15
6

(A4)3/2
. (8.4)

Note the unusual square root in the denominator that leads to the sign ambiguity. We

show below it is not an ambiguity; two low-energy SU(3) groups have opposite signs in

their dynamical scales.

The representation Aijk has Dynkin index 6. Under CA, it decomposes into one rank-

three tensor (Dynkin index 5) and one fundamental representation (Dynkin index 1) under

the CA-invariant subgroup Sp(6). Under either assignment of even and odd eigenvalues,

there is an odd number of zero modes under an Sp(6) instanton, and hence CA is anomalous.

On the other hand, under CS , it decomposes into two rank-three tensors under the CS-

invariant subgroup SO(6). Each has the “self-duality” constraint

Aijk
± = ±

i

3!
✏ijklmnAlmn

± . (8.5)

Note that there is no distinction between upper and lower indices under SO(6). In an SO(6)

instanton background, there are six zero modes for each, and hence CS is the symmetry of

the theory.

Going back to the original SU(6), the CS is given by a symmetric Cij matrix

Aijk
!

i

3!
✏ijklmnClrCmsCntA

rst , (8.6)

9This condensate also breaks the Z4 discrete symmetry as reflected in Table 11.
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PSU(3)
2
C : Note that SS0Q decomposes as + under SU(3)C and is odd under

parity. Similarly for S2S02. The linear combinations S � S0, S2
� S02, S3S0Q� S03SQ are

odd. The matching condition works out as

8S�S0 = 5S2�S02 + 1
SS0Q( )

+ 1S3S0Q�S03SQ + 1S2S02( ) mod 2 . (7.17)

PU(1)
2
2: Note that one component of Q changes its sign under parity. The matching

condition works out as

1⇥ 62Q + 8⇥ 3(�1)2S�S0

= 6(�2)2S2�S02 + 3⇥ 42
SS0Q( )

+ 3⇥ 22S3S0Q�S03SQ + 3(�4)2S2S02( ) mod 2 . (7.18)

PU(1)
2
R: Here, gauginos also contribute. The anomalies do match

7⇥ 12� + 8⇥ 3(�1)2S�S0 = 6(�1)2S2�S02 + 3⇥ (�1)2S2S02( ) mod 2 . (7.19)

PU(1)2U(1)R: This anomaly matching also works out

8⇥ 3(�1)(�1)S�S0 = 6(�2)(�1)S2�S02 + 3(�4)(�1)S2S02( ) mod 2 . (7.20)

8 Spontaneous Breaking of Outer Automorphism

Here we discuss two theories that exhibit similar dynamics where the theory confines with a

moduli space of vacua. Yet in one example the charge conjugation is spontaneously broken,

while in the other it is not. Both of them are N = 1 supersymmetric gauge theories.

8.1 SO(6) with two vectors

The first example is SO(6) with two vectors �i, i = 1, 2. This is a well-known example by

Intriligator and Seiberg. The field representations are summarized in Table 10. Once two

vectors go along the D-flat direction, SO(6) generically breaks to pure SO(4) ' SU(2)1 ⇥

SU(2)2 Yang-Mills. The matching condition is that the SU(2) dynamical scale is given by

the SO(6) dynamical scale as

⇤6
2 =

⇤10
6

detM
, Mij = �i�j . (8.1)

The point here is that the outer automorphism of SO(6), namely parity, is equivalent to

interchange of two SU(2)’s, which leaves the P-invariant subgroup SO(5), under which the

�i decomposes into 5 � 1 as expected under parity. Two SU(2) factors develop gaugino

condensates and hence the superpotential is

W = ±⇤3
2,1 ± ⇤3

2,2 = (±1± 1)
⇤5
6

(detM)1/2
. (8.2)

Note that the signs are coming from the square root of the dynamical scale ⇤6
2 above,

and not correlated, as each SU(2) factors lead to two vacua and hence there are four
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SO(6) U(1)R SU(2)f Z4

W↵ adj +1 1 0

�i 6 �1 2 1

Mij 1 �2 3 2

W↵W↵
1 +2 1 0

O 1 0 1 2

Table 10. Quantum numbers of various fields in the SO(6) theory with two vectors �i. The first
two fields are in the UV theory, while the last three are in the IR theory. The last row is the
operator O = ✏abcdef ✏↵�W ab

↵ W bc
� �e

i�
f
j ✏

ij that acquires an expectation value and breaks Z4 to Z2

[15].

R(grav)2 R3 R(SU(2))2 Z4(SU(2))2 Z4R2 Z2
4R Z3

4

W↵ +15 +15 0 0 0 0 0

�i �24 �96 �6 6 48 �24 12

UV total �9 �81 �6 6 48 �24 12

Mij �9 �81 �6 4 54 �18 24

Table 11. Anomalies between the UV and IR particle contents. The anomalies of continuous
symmetries all match [24]. The Z4 anomalies are supposed to be matched mod 4, but they match
only mod 2, indicating the spontaneous breaking due to hOi.

SO(5) CAR2
CA(SU(2))2

W↵ 10+ � 5� � +

�i 5+ � 1� + �

UV total � �

Mij 1+ + +

Table 12. The first column is the quantum number under the P-invariant subgroup Sp(4) =
SO(5). Anomalies of charge conjugation do not match, indicating that the charge conjugation is
spontaneously broken. These anomalies were not studied before.

configurations altogether. When two signs are the same, namely (+,+) or (�,�), the

superpotential has run-away behavior for the meson superfields and there is no ground

state; similar to the A✏eck–Dine–Seiberg superpotential in SU(2) theory with one flavor.

In this case, the charge conjugation that interchanges two SU(2) factors is unbroken. These
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UV total �9 �81 �6 6 48 �24 12

Mij �9 �81 �6 4 54 �18 24

Table 11. Anomalies between the UV and IR particle contents. The anomalies of continuous
symmetries all match [24]. The Z4 anomalies are supposed to be matched mod 4, but they match
only mod 2, indicating the spontaneous breaking due to hOi.

SO(5) CAR2
CA(SU(2))2

W↵ 10+ � 5� � +

�i 5+ � 1� + �

UV total � �

Mij 1+ + +

Table 12. The first column is the quantum number under the P-invariant subgroup Sp(4) =
SO(5). Anomalies of charge conjugation do not match, indicating that the charge conjugation is
spontaneously broken. These anomalies were not studied before.

configurations altogether. When two signs are the same, namely (+,+) or (�,�), the

superpotential has run-away behavior for the meson superfields and there is no ground

state; similar to the A✏eck–Dine–Seiberg superpotential in SU(2) theory with one flavor.

In this case, the charge conjugation that interchanges two SU(2) factors is unbroken. These
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UV

Not matched - P is spontaneously broken

two run-away directions correspond to Z4/Z2 while the charge conjugation is unbroken.

When two signs are the opposite, namely (+,�) or (�,+), the meson dependence

cancels exactly in the superpotential, and we have a moduli space of vacua. In this case,

the charge conjugation is spontaneously broken and hence there are two ground states; one

can even have domain walls (probably BPS). The order parameter of charge conjugation

(or equivalent parity) breaking is

h✏abcdef ✏
↵�W ab

↵ W bc
� �e

i�
f
j ✏

ij
i 6= 0 , (8.3)

where a, b, c, d, e, f = 1, · · · , 6 are the SO(6) indices, as shown in [15].9 In fact, the anomaly

matching for the charge conjugation fails in this case, as shown in Table 12. These two

vacua correspond to C ⇥ Z4/Z4 where the generator of the unbroken Z4 is embedded as

(�,!) 2 C ⇥ Z4 with ! = i.

8.2 SU(6) with one rank-three anti-symmetric tensor

The second example is SU(6) with one rank-three anti-symmetric tensor Aijk. The field

representations are summarized in Table 13. Since this is a pseudo-real representation,

there is no A2 invariant; the lowest invariant is A4. Along the D-flat direction, it breaks

SU(6) to SU(3)1 ⇥ SU(3)2 with the matching condition

⇤9
3 = ±

⇤15
6

(A4)3/2
. (8.4)

Note the unusual square root in the denominator that leads to the sign ambiguity. We

show below it is not an ambiguity; two low-energy SU(3) groups have opposite signs in

their dynamical scales.

The representation Aijk has Dynkin index 6. Under CA, it decomposes into one rank-

three tensor (Dynkin index 5) and one fundamental representation (Dynkin index 1) under

the CA-invariant subgroup Sp(6). Under either assignment of even and odd eigenvalues,

there is an odd number of zero modes under an Sp(6) instanton, and hence CA is anomalous.

On the other hand, under CS , it decomposes into two rank-three tensors under the CS-

invariant subgroup SO(6). Each has the “self-duality” constraint

Aijk
± = ±

i

3!
✏ijklmnAlmn

± . (8.5)

Note that there is no distinction between upper and lower indices under SO(6). In an SO(6)

instanton background, there are six zero modes for each, and hence CS is the symmetry of

the theory.

Going back to the original SU(6), the CS is given by a symmetric Cij matrix

Aijk
!

i

3!
✏ijklmnClrCmsCntA

rst , (8.6)

9This condensate also breaks the Z4 discrete symmetry as reflected in Table 11.
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Order parameter:
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W↵W↵
1 +2 1 0

O 1 0 1 2
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f
j ✏
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superpotential has run-away behavior for the meson superfields and there is no ground
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Analysis of the Parity anomaly

IR

PSU(3)
2
C : Note that SS0Q decomposes as + under SU(3)C and is odd under

parity. Similarly for S2S02. The linear combinations S � S0, S2
� S02, S3S0Q� S03SQ are

odd. The matching condition works out as

8S�S0 = 5S2�S02 + 1
SS0Q( )

+ 1S3S0Q�S03SQ + 1S2S02( ) mod 2 . (7.17)

PU(1)
2
2: Note that one component of Q changes its sign under parity. The matching

condition works out as

1⇥ 62Q + 8⇥ 3(�1)2S�S0

= 6(�2)2S2�S02 + 3⇥ 42
SS0Q( )

+ 3⇥ 22S3S0Q�S03SQ + 3(�4)2S2S02( ) mod 2 . (7.18)

PU(1)
2
R: Here, gauginos also contribute. The anomalies do match

7⇥ 12� + 8⇥ 3(�1)2S�S0 = 6(�1)2S2�S02 + 3⇥ (�1)2S2S02( ) mod 2 . (7.19)

PU(1)2U(1)R: This anomaly matching also works out

8⇥ 3(�1)(�1)S�S0 = 6(�2)(�1)S2�S02 + 3(�4)(�1)S2S02( ) mod 2 . (7.20)

8 Spontaneous Breaking of Outer Automorphism

Here we discuss two theories that exhibit similar dynamics where the theory confines with a

moduli space of vacua. Yet in one example the charge conjugation is spontaneously broken,

while in the other it is not. Both of them are N = 1 supersymmetric gauge theories.

8.1 SO(6) with two vectors

The first example is SO(6) with two vectors �i, i = 1, 2. This is a well-known example by

Intriligator and Seiberg. The field representations are summarized in Table 10. Once two

vectors go along the D-flat direction, SO(6) generically breaks to pure SO(4) ' SU(2)1 ⇥

SU(2)2 Yang-Mills. The matching condition is that the SU(2) dynamical scale is given by

the SO(6) dynamical scale as

⇤6
2 =

⇤10
6

detM
, Mij = �i�j . (8.1)

The point here is that the outer automorphism of SO(6), namely parity, is equivalent to

interchange of two SU(2)’s, which leaves the P-invariant subgroup SO(5), under which the

�i decomposes into 5 � 1 as expected under parity. Two SU(2) factors develop gaugino

condensates and hence the superpotential is

W = ±⇤3
2,1 ± ⇤3

2,2 = (±1± 1)
⇤5
6

(detM)1/2
. (8.2)

Note that the signs are coming from the square root of the dynamical scale ⇤6
2 above,

and not correlated, as each SU(2) factors lead to two vacua and hence there are four
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SU(6) U(1)R Z6 SO(6)

W↵ adj +1 0 � � +

A �1 1 + � �

A4
1 �4 4 1+

W↵W↵
1 +2 0 1+

O 1 0 2 1+

Table 13. Quantum number of fields in the SU(6) theory with rank-three anti-symmetric tensor
A. The last row is the operator O = Tr (T aAA) Tr (T aW↵W↵) that acquires an expectation value
and breaks Z6 to Z2.

R(grav)2 R3 Z6(grav)2 Z6R2 Z2
6R CSR2

W↵ 35 35 0 0 0 +

A �40 �160 40 80 �40 +

UV total �5 �125 4 2 4 +

A4
�5 �125 8 100 �80 +

Table 14. Anomaly matching conditions between the UV and IR. The R-charge of A is �1 so
that U(1)R is anomaly free under the SU(6) gauge group. Note that the Z6 anomalies are not
matched because it is broken to Z2 due to the A2WW condensate. On the other hand, the charge
conjugation anomalies had not been studied before, and are matched correctly.

where we chose one possible sign. Note that a factor of i is needed to ensure C
2
S = 1 in the

basis where Cij = �ij . Then a charge-conjugation invariant D-flat direction is

A123 = v , A456 = �iv . (8.7)

Note that the D-flatness requires only D = |A123
|
2
� |A456

|
2 = 0 and it does not fix the

relative phase between the two expectation values. It is the charge conjugation invariance

that fixes the relative phase.10 It breaks SU(6) to SU(3)1 ⇥ SU(3)2, and the low-energy

gauge coupling constants are given by decoupling the heavy vector multiplet of mass v or

10If the relative phase is di↵erent, we choose a di↵erent basis to define a new Cij = �ije
i↵ and the charge

conjugation invariance always holds.
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UV

IR

two run-away directions correspond to Z4/Z2 while the charge conjugation is unbroken.

When two signs are the opposite, namely (+,�) or (�,+), the meson dependence

cancels exactly in the superpotential, and we have a moduli space of vacua. In this case,

the charge conjugation is spontaneously broken and hence there are two ground states; one

can even have domain walls (probably BPS). The order parameter of charge conjugation

(or equivalent parity) breaking is

h✏abcdef ✏
↵�W ab

↵ W bc
� �e

i�
f
j ✏

ij
i 6= 0 , (8.3)

where a, b, c, d, e, f = 1, · · · , 6 are the SO(6) indices, as shown in [15].9 In fact, the anomaly

matching for the charge conjugation fails in this case, as shown in Table 12. These two

vacua correspond to C ⇥ Z4/Z4 where the generator of the unbroken Z4 is embedded as

(�,!) 2 C ⇥ Z4 with ! = i.

8.2 SU(6) with one rank-three anti-symmetric tensor

The second example is SU(6) with one rank-three anti-symmetric tensor Aijk. The field

representations are summarized in Table 13. Since this is a pseudo-real representation,

there is no A2 invariant; the lowest invariant is A4. Along the D-flat direction, it breaks

SU(6) to SU(3)1 ⇥ SU(3)2 with the matching condition

⇤9
3 = ±

⇤15
6

(A4)3/2
. (8.4)

Note the unusual square root in the denominator that leads to the sign ambiguity. We

show below it is not an ambiguity; two low-energy SU(3) groups have opposite signs in

their dynamical scales.

The representation Aijk has Dynkin index 6. Under CA, it decomposes into one rank-

three tensor (Dynkin index 5) and one fundamental representation (Dynkin index 1) under

the CA-invariant subgroup Sp(6). Under either assignment of even and odd eigenvalues,

there is an odd number of zero modes under an Sp(6) instanton, and hence CA is anomalous.

On the other hand, under CS , it decomposes into two rank-three tensors under the CS-

invariant subgroup SO(6). Each has the “self-duality” constraint

Aijk
± = ±

i

3!
✏ijklmnAlmn

± . (8.5)

Note that there is no distinction between upper and lower indices under SO(6). In an SO(6)

instanton background, there are six zero modes for each, and hence CS is the symmetry of

the theory.

Going back to the original SU(6), the CS is given by a symmetric Cij matrix

Aijk
!

i

3!
✏ijklmnClrCmsCntA

rst , (8.6)

9This condensate also breaks the Z4 discrete symmetry as reflected in Table 11.

– 35 –

SU(6) U(1)R Z6 SO(6)

W↵ adj +1 0 � � +

A �1 1 + � �

A4
1 �4 4 1+

W↵W↵
1 +2 0 1+

O 1 0 2 1+

Table 13. Quantum number of fields in the SU(6) theory with rank-three anti-symmetric tensor
A. The last row is the operator O = Tr (T aAA) Tr (T aW↵W↵) that acquires an expectation value
and breaks Z6 to Z2.

R(grav)2 R3 Z6(grav)2 Z6R2 Z2
6R CSR2

W↵ 35 35 0 0 0 +

A �40 �160 40 80 �40 +

UV total �5 �125 4 2 4 +

A4
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Table 14. Anomaly matching conditions between the UV and IR. The R-charge of A is �1 so
that U(1)R is anomaly free under the SU(6) gauge group. Note that the Z6 anomalies are not
matched because it is broken to Z2 due to the A2WW condensate. On the other hand, the charge
conjugation anomalies had not been studied before, and are matched correctly.

where we chose one possible sign. Note that a factor of i is needed to ensure C
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basis where Cij = �ij . Then a charge-conjugation invariant D-flat direction is

A123 = v , A456 = �iv . (8.7)
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2 = 0 and it does not fix the
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that fixes the relative phase.10 It breaks SU(6) to SU(3)1 ⇥ SU(3)2, and the low-energy

gauge coupling constants are given by decoupling the heavy vector multiplet of mass v or

10If the relative phase is di↵erent, we choose a di↵erent basis to define a new Cij = �ije
i↵ and the charge

conjugation invariance always holds.
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Matched - C is unbroken

SO(6) breaks to SU(2)xSU(2) SU(6) breaks to SU(3)xSU(3)



two run-away directions correspond to Z4/Z2 while the charge conjugation is unbroken.

When two signs are the opposite, namely (+,�) or (�,+), the meson dependence

cancels exactly in the superpotential, and we have a moduli space of vacua. In this case,

the charge conjugation is spontaneously broken and hence there are two ground states; one

can even have domain walls (probably BPS). The order parameter of charge conjugation

(or equivalent parity) breaking is

h✏abcdef ✏
↵�W ab

↵ W bc
� �e

i�
f
j ✏

ij
i 6= 0 , (8.3)

where a, b, c, d, e, f = 1, · · · , 6 are the SO(6) indices, as shown in [15].9 In fact, the anomaly

matching for the charge conjugation fails in this case, as shown in Table 12. These two

vacua correspond to C ⇥ Z4/Z4 where the generator of the unbroken Z4 is embedded as

(�,!) 2 C ⇥ Z4 with ! = i.

8.2 SU(6) with one rank-three anti-symmetric tensor

The second example is SU(6) with one rank-three anti-symmetric tensor Aijk. The field

representations are summarized in Table 13. Since this is a pseudo-real representation,

there is no A2 invariant; the lowest invariant is A4. Along the D-flat direction, it breaks

SU(6) to SU(3)1 ⇥ SU(3)2 with the matching condition

⇤9
3 = ±

⇤15
6

(A4)3/2
. (8.4)

Note the unusual square root in the denominator that leads to the sign ambiguity. We

show below it is not an ambiguity; two low-energy SU(3) groups have opposite signs in

their dynamical scales.

The representation Aijk has Dynkin index 6. Under CA, it decomposes into one rank-

three tensor (Dynkin index 5) and one fundamental representation (Dynkin index 1) under

the CA-invariant subgroup Sp(6). Under either assignment of even and odd eigenvalues,

there is an odd number of zero modes under an Sp(6) instanton, and hence CA is anomalous.

On the other hand, under CS , it decomposes into two rank-three tensors under the CS-

invariant subgroup SO(6). Each has the “self-duality” constraint

Aijk
± = ±

i

3!
✏ijklmnAlmn

± . (8.5)

Note that there is no distinction between upper and lower indices under SO(6). In an SO(6)

instanton background, there are six zero modes for each, and hence CS is the symmetry of

the theory.

Going back to the original SU(6), the CS is given by a symmetric Cij matrix

Aijk
!

i

3!
✏ijklmnClrCmsCntA

rst , (8.6)

9This condensate also breaks the Z4 discrete symmetry as reflected in Table 11.
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PSU(3)
2
C : Note that SS0Q decomposes as + under SU(3)C and is odd under

parity. Similarly for S2S02. The linear combinations S � S0, S2
� S02, S3S0Q� S03SQ are

odd. The matching condition works out as

8S�S0 = 5S2�S02 + 1
SS0Q( )

+ 1S3S0Q�S03SQ + 1S2S02( ) mod 2 . (7.17)

PU(1)
2
2: Note that one component of Q changes its sign under parity. The matching

condition works out as

1⇥ 62Q + 8⇥ 3(�1)2S�S0

= 6(�2)2S2�S02 + 3⇥ 42
SS0Q( )

+ 3⇥ 22S3S0Q�S03SQ + 3(�4)2S2S02( ) mod 2 . (7.18)

PU(1)
2
R: Here, gauginos also contribute. The anomalies do match

7⇥ 12� + 8⇥ 3(�1)2S�S0 = 6(�1)2S2�S02 + 3⇥ (�1)2S2S02( ) mod 2 . (7.19)

PU(1)2U(1)R: This anomaly matching also works out

8⇥ 3(�1)(�1)S�S0 = 6(�2)(�1)S2�S02 + 3(�4)(�1)S2S02( ) mod 2 . (7.20)

8 Spontaneous Breaking of Outer Automorphism

Here we discuss two theories that exhibit similar dynamics where the theory confines with a

moduli space of vacua. Yet in one example the charge conjugation is spontaneously broken,

while in the other it is not. Both of them are N = 1 supersymmetric gauge theories.

8.1 SO(6) with two vectors

The first example is SO(6) with two vectors �i, i = 1, 2. This is a well-known example by

Intriligator and Seiberg. The field representations are summarized in Table 10. Once two

vectors go along the D-flat direction, SO(6) generically breaks to pure SO(4) ' SU(2)1 ⇥

SU(2)2 Yang-Mills. The matching condition is that the SU(2) dynamical scale is given by

the SO(6) dynamical scale as

⇤6
2 =

⇤10
6

detM
, Mij = �i�j . (8.1)

The point here is that the outer automorphism of SO(6), namely parity, is equivalent to

interchange of two SU(2)’s, which leaves the P-invariant subgroup SO(5), under which the

�i decomposes into 5 � 1 as expected under parity. Two SU(2) factors develop gaugino

condensates and hence the superpotential is

W = ±⇤3
2,1 ± ⇤3

2,2 = (±1± 1)
⇤5
6

(detM)1/2
. (8.2)

Note that the signs are coming from the square root of the dynamical scale ⇤6
2 above,

and not correlated, as each SU(2) factors lead to two vacua and hence there are four
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Intriligator and Seiberg (1995) Csáki, Schmaltz and Skiba (1996)
SO(6) breaks to SU(2)xSU(2) SU(6) breaks to SU(3)xSU(3)

SPONTANEOUS BREAKING OF C, P
Two N=1 SUSY theories

SO(6) U(1)R SU(2)f Z4

W↵ adj +1 1 0

�i 6 �1 2 1

Mij 1 �2 3 2

W↵W↵
1 +2 1 0

O 1 0 1 2

Table 10. Quantum numbers of various fields in the SO(6) theory with two vectors �i. The first
two fields are in the UV theory, while the last three are in the IR theory. The last row is the
operator O = ✏abcdef ✏↵�W ab

↵ W bc
� �e

i�
f
j ✏

ij that acquires an expectation value and breaks Z4 to Z2

[15].

R(grav)2 R3 R(SU(2))2 Z4(SU(2))2 Z4R2 Z2
4R Z3

4

W↵ +15 +15 0 0 0 0 0

�i �24 �96 �6 6 48 �24 12

UV total �9 �81 �6 6 48 �24 12

Mij �9 �81 �6 4 54 �18 24

Table 11. Anomalies between the UV and IR particle contents. The anomalies of continuous
symmetries all match [24]. The Z4 anomalies are supposed to be matched mod 4, but they match
only mod 2, indicating the spontaneous breaking due to hOi.

SO(5) CAR2
CA(SU(2))2

W↵ 10+ � 5� � +

�i 5+ � 1� + �

UV total � �

Mij 1+ + +

Table 12. The first column is the quantum number under the P-invariant subgroup Sp(4) =
SO(5). Anomalies of charge conjugation do not match, indicating that the charge conjugation is
spontaneously broken. These anomalies were not studied before.

configurations altogether. When two signs are the same, namely (+,+) or (�,�), the

superpotential has run-away behavior for the meson superfields and there is no ground

state; similar to the A✏eck–Dine–Seiberg superpotential in SU(2) theory with one flavor.

In this case, the charge conjugation that interchanges two SU(2) factors is unbroken. These
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configurations altogether. When two signs are the same, namely (+,+) or (�,�), the

superpotential has run-away behavior for the meson superfields and there is no ground

state; similar to the A✏eck–Dine–Seiberg superpotential in SU(2) theory with one flavor.

In this case, the charge conjugation that interchanges two SU(2) factors is unbroken. These
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UV

Not matched - P is spontaneously broken

two run-away directions correspond to Z4/Z2 while the charge conjugation is unbroken.

When two signs are the opposite, namely (+,�) or (�,+), the meson dependence

cancels exactly in the superpotential, and we have a moduli space of vacua. In this case,

the charge conjugation is spontaneously broken and hence there are two ground states; one

can even have domain walls (probably BPS). The order parameter of charge conjugation

(or equivalent parity) breaking is

h✏abcdef ✏
↵�W ab

↵ W bc
� �e

i�
f
j ✏

ij
i 6= 0 , (8.3)

where a, b, c, d, e, f = 1, · · · , 6 are the SO(6) indices, as shown in [15].9 In fact, the anomaly

matching for the charge conjugation fails in this case, as shown in Table 12. These two

vacua correspond to C ⇥ Z4/Z4 where the generator of the unbroken Z4 is embedded as

(�,!) 2 C ⇥ Z4 with ! = i.

8.2 SU(6) with one rank-three anti-symmetric tensor

The second example is SU(6) with one rank-three anti-symmetric tensor Aijk. The field

representations are summarized in Table 13. Since this is a pseudo-real representation,

there is no A2 invariant; the lowest invariant is A4. Along the D-flat direction, it breaks

SU(6) to SU(3)1 ⇥ SU(3)2 with the matching condition

⇤9
3 = ±

⇤15
6

(A4)3/2
. (8.4)

Note the unusual square root in the denominator that leads to the sign ambiguity. We

show below it is not an ambiguity; two low-energy SU(3) groups have opposite signs in

their dynamical scales.

The representation Aijk has Dynkin index 6. Under CA, it decomposes into one rank-

three tensor (Dynkin index 5) and one fundamental representation (Dynkin index 1) under

the CA-invariant subgroup Sp(6). Under either assignment of even and odd eigenvalues,

there is an odd number of zero modes under an Sp(6) instanton, and hence CA is anomalous.

On the other hand, under CS , it decomposes into two rank-three tensors under the CS-

invariant subgroup SO(6). Each has the “self-duality” constraint

Aijk
± = ±

i

3!
✏ijklmnAlmn

± . (8.5)

Note that there is no distinction between upper and lower indices under SO(6). In an SO(6)

instanton background, there are six zero modes for each, and hence CS is the symmetry of

the theory.

Going back to the original SU(6), the CS is given by a symmetric Cij matrix

Aijk
!

i

3!
✏ijklmnClrCmsCntA

rst , (8.6)

9This condensate also breaks the Z4 discrete symmetry as reflected in Table 11.
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Table 11. Anomalies between the UV and IR particle contents. The anomalies of continuous
symmetries all match [24]. The Z4 anomalies are supposed to be matched mod 4, but they match
only mod 2, indicating the spontaneous breaking due to hOi.
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Table 12. The first column is the quantum number under the P-invariant subgroup Sp(4) =
SO(5). Anomalies of charge conjugation do not match, indicating that the charge conjugation is
spontaneously broken. These anomalies were not studied before.

configurations altogether. When two signs are the same, namely (+,+) or (�,�), the

superpotential has run-away behavior for the meson superfields and there is no ground

state; similar to the A✏eck–Dine–Seiberg superpotential in SU(2) theory with one flavor.

In this case, the charge conjugation that interchanges two SU(2) factors is unbroken. These
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configurations altogether. When two signs are the same, namely (+,+) or (�,�), the

superpotential has run-away behavior for the meson superfields and there is no ground
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In this case, the charge conjugation that interchanges two SU(2) factors is unbroken. These
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Analysis of the Parity anomaly

IR

PSU(3)
2
C : Note that SS0Q decomposes as + under SU(3)C and is odd under

parity. Similarly for S2S02. The linear combinations S � S0, S2
� S02, S3S0Q� S03SQ are

odd. The matching condition works out as

8S�S0 = 5S2�S02 + 1
SS0Q( )

+ 1S3S0Q�S03SQ + 1S2S02( ) mod 2 . (7.17)

PU(1)
2
2: Note that one component of Q changes its sign under parity. The matching

condition works out as

1⇥ 62Q + 8⇥ 3(�1)2S�S0

= 6(�2)2S2�S02 + 3⇥ 42
SS0Q( )

+ 3⇥ 22S3S0Q�S03SQ + 3(�4)2S2S02( ) mod 2 . (7.18)

PU(1)
2
R: Here, gauginos also contribute. The anomalies do match

7⇥ 12� + 8⇥ 3(�1)2S�S0 = 6(�1)2S2�S02 + 3⇥ (�1)2S2S02( ) mod 2 . (7.19)

PU(1)2U(1)R: This anomaly matching also works out

8⇥ 3(�1)(�1)S�S0 = 6(�2)(�1)S2�S02 + 3(�4)(�1)S2S02( ) mod 2 . (7.20)

8 Spontaneous Breaking of Outer Automorphism

Here we discuss two theories that exhibit similar dynamics where the theory confines with a

moduli space of vacua. Yet in one example the charge conjugation is spontaneously broken,

while in the other it is not. Both of them are N = 1 supersymmetric gauge theories.

8.1 SO(6) with two vectors

The first example is SO(6) with two vectors �i, i = 1, 2. This is a well-known example by

Intriligator and Seiberg. The field representations are summarized in Table 10. Once two

vectors go along the D-flat direction, SO(6) generically breaks to pure SO(4) ' SU(2)1 ⇥

SU(2)2 Yang-Mills. The matching condition is that the SU(2) dynamical scale is given by

the SO(6) dynamical scale as

⇤6
2 =

⇤10
6

detM
, Mij = �i�j . (8.1)

The point here is that the outer automorphism of SO(6), namely parity, is equivalent to

interchange of two SU(2)’s, which leaves the P-invariant subgroup SO(5), under which the

�i decomposes into 5 � 1 as expected under parity. Two SU(2) factors develop gaugino

condensates and hence the superpotential is

W = ±⇤3
2,1 ± ⇤3

2,2 = (±1± 1)
⇤5
6

(detM)1/2
. (8.2)

Note that the signs are coming from the square root of the dynamical scale ⇤6
2 above,

and not correlated, as each SU(2) factors lead to two vacua and hence there are four
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SU(6) U(1)R Z6 SO(6)

W↵ adj +1 0 � � +

A �1 1 + � �

A4
1 �4 4 1+

W↵W↵
1 +2 0 1+

O 1 0 2 1+

Table 13. Quantum number of fields in the SU(6) theory with rank-three anti-symmetric tensor
A. The last row is the operator O = Tr (T aAA) Tr (T aW↵W↵) that acquires an expectation value
and breaks Z6 to Z2.

R(grav)2 R3 Z6(grav)2 Z6R2 Z2
6R CSR2

W↵ 35 35 0 0 0 +

A �40 �160 40 80 �40 +

UV total �5 �125 4 2 4 +

A4
�5 �125 8 100 �80 +

Table 14. Anomaly matching conditions between the UV and IR. The R-charge of A is �1 so
that U(1)R is anomaly free under the SU(6) gauge group. Note that the Z6 anomalies are not
matched because it is broken to Z2 due to the A2WW condensate. On the other hand, the charge
conjugation anomalies had not been studied before, and are matched correctly.

where we chose one possible sign. Note that a factor of i is needed to ensure C
2
S = 1 in the

basis where Cij = �ij . Then a charge-conjugation invariant D-flat direction is

A123 = v , A456 = �iv . (8.7)

Note that the D-flatness requires only D = |A123
|
2
� |A456

|
2 = 0 and it does not fix the

relative phase between the two expectation values. It is the charge conjugation invariance

that fixes the relative phase.10 It breaks SU(6) to SU(3)1 ⇥ SU(3)2, and the low-energy

gauge coupling constants are given by decoupling the heavy vector multiplet of mass v or

10If the relative phase is di↵erent, we choose a di↵erent basis to define a new Cij = �ije
i↵ and the charge

conjugation invariance always holds.
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UV

IR

two run-away directions correspond to Z4/Z2 while the charge conjugation is unbroken.

When two signs are the opposite, namely (+,�) or (�,+), the meson dependence

cancels exactly in the superpotential, and we have a moduli space of vacua. In this case,

the charge conjugation is spontaneously broken and hence there are two ground states; one

can even have domain walls (probably BPS). The order parameter of charge conjugation

(or equivalent parity) breaking is

h✏abcdef ✏
↵�W ab

↵ W bc
� �e

i�
f
j ✏

ij
i 6= 0 , (8.3)

where a, b, c, d, e, f = 1, · · · , 6 are the SO(6) indices, as shown in [15].9 In fact, the anomaly

matching for the charge conjugation fails in this case, as shown in Table 12. These two

vacua correspond to C ⇥ Z4/Z4 where the generator of the unbroken Z4 is embedded as

(�,!) 2 C ⇥ Z4 with ! = i.

8.2 SU(6) with one rank-three anti-symmetric tensor

The second example is SU(6) with one rank-three anti-symmetric tensor Aijk. The field

representations are summarized in Table 13. Since this is a pseudo-real representation,

there is no A2 invariant; the lowest invariant is A4. Along the D-flat direction, it breaks

SU(6) to SU(3)1 ⇥ SU(3)2 with the matching condition

⇤9
3 = ±

⇤15
6

(A4)3/2
. (8.4)

Note the unusual square root in the denominator that leads to the sign ambiguity. We

show below it is not an ambiguity; two low-energy SU(3) groups have opposite signs in

their dynamical scales.

The representation Aijk has Dynkin index 6. Under CA, it decomposes into one rank-

three tensor (Dynkin index 5) and one fundamental representation (Dynkin index 1) under

the CA-invariant subgroup Sp(6). Under either assignment of even and odd eigenvalues,

there is an odd number of zero modes under an Sp(6) instanton, and hence CA is anomalous.

On the other hand, under CS , it decomposes into two rank-three tensors under the CS-

invariant subgroup SO(6). Each has the “self-duality” constraint

Aijk
± = ±

i

3!
✏ijklmnAlmn

± . (8.5)

Note that there is no distinction between upper and lower indices under SO(6). In an SO(6)

instanton background, there are six zero modes for each, and hence CS is the symmetry of

the theory.

Going back to the original SU(6), the CS is given by a symmetric Cij matrix

Aijk
!

i

3!
✏ijklmnClrCmsCntA

rst , (8.6)

9This condensate also breaks the Z4 discrete symmetry as reflected in Table 11.
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O 1 0 2 1+

Table 13. Quantum number of fields in the SU(6) theory with rank-three anti-symmetric tensor
A. The last row is the operator O = Tr (T aAA) Tr (T aW↵W↵) that acquires an expectation value
and breaks Z6 to Z2.

R(grav)2 R3 Z6(grav)2 Z6R2 Z2
6R CSR2

W↵ 35 35 0 0 0 +

A �40 �160 40 80 �40 +

UV total �5 �125 4 2 4 +

A4
�5 �125 8 100 �80 +

Table 14. Anomaly matching conditions between the UV and IR. The R-charge of A is �1 so
that U(1)R is anomaly free under the SU(6) gauge group. Note that the Z6 anomalies are not
matched because it is broken to Z2 due to the A2WW condensate. On the other hand, the charge
conjugation anomalies had not been studied before, and are matched correctly.
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Note that the D-flatness requires only D = |A123
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gauge coupling constants are given by decoupling the heavy vector multiplet of mass v or

10If the relative phase is di↵erent, we choose a di↵erent basis to define a new Cij = �ije
i↵ and the charge

conjugation invariance always holds.
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and breaks Z6 to Z2.

R(grav)2 R3 Z6(grav)2 Z6R2 Z2
6R CSR2

W↵ 35 35 0 0 0 +

A �40 �160 40 80 �40 +

UV total �5 �125 4 2 4 +

A4
�5 �125 8 100 �80 +

Table 14. Anomaly matching conditions between the UV and IR. The R-charge of A is �1 so
that U(1)R is anomaly free under the SU(6) gauge group. Note that the Z6 anomalies are not
matched because it is broken to Z2 due to the A2WW condensate. On the other hand, the charge
conjugation anomalies had not been studied before, and are matched correctly.

where we chose one possible sign. Note that a factor of i is needed to ensure C
2
S = 1 in the

basis where Cij = �ij . Then a charge-conjugation invariant D-flat direction is

A123 = v , A456 = �iv . (8.7)

Note that the D-flatness requires only D = |A123
|
2
� |A456

|
2 = 0 and it does not fix the

relative phase between the two expectation values. It is the charge conjugation invariance

that fixes the relative phase.10 It breaks SU(6) to SU(3)1 ⇥ SU(3)2, and the low-energy

gauge coupling constants are given by decoupling the heavy vector multiplet of mass v or

10If the relative phase is di↵erent, we choose a di↵erent basis to define a new Cij = �ije
i↵ and the charge

conjugation invariance always holds.
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Matched - C is unbroken

The anomaly matching is new

Two theories with similar 
dynamics on the face of it, have 
different fates

Two ground states in SO(6) 
theory, leading to possibility of 
domain walls
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Other outer automorphisms 

· · · · · ·

1 k � 1 k 2k � 1

A2k�1

· · ·Ck

Figure 1. Dynkin diagram A2k�1 (Lie algebra su(N = 2k)) has a Z2 outer automorphism, which
flips the order of its nodes. Folding it by average yields the Dynkin diagram Ck, which represents
its CA-invariant subalgebra sp(2k).

· · · · · ·

1 k k + 1 2k

A2k

· · ·Bk

Figure 2. Dynkin diagram A2k (Lie algebra su(N = 2k+1)) has a Z2 outer automorphism, which
flips the order of its nodes. Folding it by average yields the Dynkin diagram Bk, which represents
its CS-invariant subalgebra so(2k + 1).

· · ·Dr

· · ·Br�1

Figure 3. Dynkin diagramDr (Lie algebra so(2r)) has a Z2 outer automorphism which interchanges
its two branches. Folding it by average yields the Dynkin diagram Br�1, which represents its P-
invariant subalgebra so(2r � 1).

For all these groups but SO(8), the outer automorphism is a Z2 group, which we will call

“charge conjugation”: Z2 = {1 , C} or “parity”: Z2 = {1 , P}

interchangeably. We also accept the abuse of these terms to refer to both the group

Z2 = {1 , C} (Z2 = {1 , P}) and the element C (P). For SO(8), the outer automorphism

group is S3 which is called triality. Yet for our applications we will be only interested in

the Z2 subgroup of S3 and use the same terminology. Unfortunately, we could not find

mathematical literature that fleshed out how the outer automorphisms act explicitly on

each Lie algebra. So we briefly describe it in this section.

On the Lie algebra, an outer automorphism leaves a subalgebra invariant while all

the other elements are odd. Namely it is an involution of the Lie algebra. We will refer

to the subalgebra that is left invariant as the “C-invariant” or “P-invariant” subalgebra

(subgroup). For some involutions, the C-invariant subalgebra can be obtained by folding the

Dynkin diagram, as shown in Figs. 1 to 5.1 Lie algebra involutions have been systematically

1See [26–28] as well as App. B in [1] and App. C.2 in [2] for details of folding, in particular, the two

types of folding: folding by average and folding by sum.
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D4

G2

Figure 4. Dynkin diagram D4 (Lie algebra so(8)) has a triality S3 outer automorphism which
permutates its three branches. Folding it by average yields the Dynkin diagram G2.

E6

F4

Figure 5. The Dynkin diagram E6 has a Z2 outer automorphism which interchanges its two
branches. Folding it by average yields its C-invariant subalgebra F4.

classified as symmetric spaces G/K (e.g. [20]), but in general only a small subset of

symmetric spaces may give outer automorphisms on the group G. In addition, the outer

automorphism on G must interchange certain representations indicated by the symmetry

of the Dynkin diagram, which become equivalent under K:

SU(N) fundamental and anti-fundamental representations

SO(2r) two inequivalent spinor representations

E6 27 and 27
⇤ representations

These requirements leave us with only the following possibilities for G/K to form an outer

automorphism:

SU(N)/SO(N)

SU(2k)/Sp(2k)

SO(2r)/ (SO(q)⇥ SO(2r � q)) (q odd)

E6/(Sp(8)/Z2)

E6/F4

(2.1)

Before discussing each of these outer automorphisms at length, let us summarize some

general properties of them. We find that there are three di↵erent types of “equivalence

relations” that can be discussed regarding two outer automorphisms C1 and C2 of the same

group G:

1. They are equivalent representatives of the quotient group Aut(G)/Inn(G), namely

that they yield the same coset Inn(G)�C1 = Inn(G)�C2. Operationally, this condition

is the same as requiring 9 g 2 G such that (g C1) g0 (g C1)
�1 = C2 g0 C

�1
2 , 8g0 2 G.
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If symmetry found to be anomalous, constraints on model building (obstruction to gauging)

Anomaly inflow understanding? Edge states, similar to recent studies of time reversal? 

Generalized / non-invertible symmetries
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