

* talk based on: Electroweak Phase Transition in a Dark Sector with CP Violation

by LB, Margarete Mühlleitner and Jonas Müller [2204.13425]

Electroweak Phase Transition in a Dark Sector with CP Violation

Lisa Biermann¹

¹Institute for Theoretical Physics (ITP) Karlsruhe Institute of Technology (KIT) lisa.biermann@kit.edu

8th Symposium on Prospects in the Physics of **DISCRETE** Symmetries, November 2022

Lisa Biermann (ITP, KIT)

• Electroweak baryogenesis (EWBG) can generate observed baryon asymmetry of the universe (BAU) ($\eta \simeq 6.1 \times 10^{-10}$ [Planck, 2018]) if [A. D. Sakharov, 1967], [D. Morrissey, M. Ramsey-Musolf, 2012]

- Electroweak baryogenesis (EWBG) can generate observed baryon asymmetry of the universe (BAU) ($\eta \simeq 6.1 \times 10^{-10}$ [Planck, 2018]) if [A. D. Sakharov, 1967], [D. Morrissey, M. Ramsey-Musolf, 2012]
 - additional (non-standard) CPV (generation of LH fermion access in front of bubble wall)
 - → creation of BAU: EW sphaleron transitions (triggered by LH fermion access) [F. R. Klinkhammer, N.S. Manton, 1984]
 - sufficiently strong departure from thermal equilibrium, $\xi_c \equiv \frac{v_c}{T_c} \gtrsim 1$ (*conservation* of BAU inside bubble) [M. Quiros, 1994] \Rightarrow **SFOEWPT** (*strong first-order electroweak phase transition*)

- Electroweak baryogenesis (EWBG) can generate observed baryon asymmetry of the universe (BAU) ($\eta \simeq 6.1 \times 10^{-10}$ [Planck, 2018]) if [A. D. Sakharov, 1967], [D. Morrissey, M. Ramsey-Musolf, 2012]
 - additional (non-standard) CPV (generation of LH fermion access in front of bubble wall)
 - → creation of BAU: EW sphaleron transitions (triggered by LH fermion access) [F. R. Klinkhammer, N.S. Manton, 1984]
 - sufficiently strong departure from thermal equilibrium, $\xi_c \equiv \frac{v_c}{T_c} \gtrsim 1$ (*conservation* of BAU inside bubble) [M. Quiros, 1994] \Rightarrow **SFOEWPT** (*strong first-order electroweak phase transition*)
 - ⇒ BSM physics required

- Electroweak baryogenesis (EWBG) can generate observed baryon asymmetry of the universe (BAU) ($\eta \simeq 6.1 \times 10^{-10}$ [Planck, 2018]) if [A. D. Sakharov, 1967], [D. Morrissey, M. Ramsey-Musolf, 2012]
 - additional (non-standard) CPV (generation of LH fermion access in front of bubble wall)
 - → creation of BAU: EW sphaleron transitions (triggered by LH fermion access) [F. R. Klinkhammer, N.S. Manton, 1984]
 - sufficiently strong departure from thermal equilibrium, $\xi_c \equiv \frac{v_c}{T_c} \gtrsim 1$ (*conservation* of BAU inside bubble) [M. Quiros, 1994] \Rightarrow **SFOEWPT** (*strong first-order electroweak phase transition*)

\Rightarrow BSM physics required

- ⇒ promising (extended Higgs sector) model candidate 'CP in the Dark' [D. Azevedo et al., 2018]
- \rightarrow addresses **two** open problems of the SM:

- Electroweak baryogenesis (EWBG) can generate observed baryon asymmetry of the universe (BAU) ($\eta \simeq 6.1 \times 10^{-10}$ [Planck, 2018]) if [A. D. Sakharov, 1967], [D. Morrissey, M. Ramsey-Musolf, 2012]
 - additional (non-standard) CPV (generation of LH fermion access in front of bubble wall)
 - → creation of BAU: EW sphaleron transitions (triggered by LH fermion access) [F. R. Klinkhammer, N.S. Manton, 1984]
 - sufficiently strong departure from thermal equilibrium, $\xi_c \equiv \frac{v_c}{T_c} \gtrsim 1$ (*conservation* of BAU inside bubble) [M. Quiros, 1994] \Rightarrow **SFOEWPT** (*strong first-order electroweak phase transition*)

⇒ BSM physics required

- ⇒ promising (extended Higgs sector) model candidate 'CP in the Dark' [D. Azevedo et al., 2018]
- \rightarrow addresses **two** open problems of the SM:
 - viable stable particle DM candidate
 - extra sources of **CP violation** *solely* in the 'dark' sector of the model *unconstrained* by EDM constraints
 - \rightarrow *naturally* aligned SM-like Higgs boson h

- Electroweak baryogenesis (EWBG) can generate observed baryon asymmetry of the universe (BAU) ($\eta \simeq 6.1 \times 10^{-10}$ [Planck, 2018]) if [A. D. Sakharov, 1967], [D. Morrissey, M. Ramsey-Musolf, 2012]
 - additional (non-standard) CPV (generation of LH fermion access in front of bubble wall)
 - → creation of BAU: EW sphaleron transitions (triggered by LH fermion access) [F. R. Klinkhammer, N.S. Manton, 1984]
 - sufficiently strong departure from thermal equilibrium, $\xi_c \equiv \frac{v_c}{T_c} \gtrsim 1$ (*conservation* of BAU inside bubble) [M. Quiros, 1994] \Rightarrow **SFOEWPT** (*strong first-order electroweak phase transition*)

⇒ BSM physics required

- ⇒ promising (extended Higgs sector) model candidate 'CP in the Dark' [D. Azevedo et al., 2018]
- \rightarrow addresses **two** open problems of the SM:
 - viable stable particle DM candidate
 - extra sources of **CP violation** *solely* in the 'dark' sector of the model *unconstrained* by EDM constraints
 - \rightarrow *naturally* aligned SM-like Higgs boson h

Now .. Can we generate an SFOEWPT within 'CP in the Dark'?

Can the 'hidden' CP violation be translated to the visible sector?

Lisa Biermann (ITP, KIT)

'CP in the Dark' [D. Azevedo, P. Ferreira, M. Mühleitner, S. Patel, R. Santos, J. Wittbrodt, 2018]

• N2HDM-like extended scalar sector, *one* discrete \mathbb{Z}_2 symmetry

$$\Phi_1 \to +\Phi_1, \quad \Phi_2 \to -\Phi_2, \quad \Phi_S \to -\Phi_S$$

• $SU(2)_L \times U(1)_Y$ and \mathbb{Z}_2 -invariant tree-level potential:

$$V^{(0)} = m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 + \frac{m_S^2}{2} \Phi_S^2 + \left(\mathbf{A} \Phi_1^{\dagger} \Phi_2 \Phi_S + h.c.\right) + \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2\right)^2 + h.c. \right] + \frac{\lambda_6}{4} \Phi_S^4 + \frac{\lambda_7}{2} |\Phi_1|^2 \Phi_S^2 + \frac{\lambda_8}{2} |\Phi_2|^2 \Phi_S^2$$

'CP in the Dark' [D. Azevedo, P. Ferreira, M. Mühleitner, S. Patel, R. Santos, J. Wittbrodt, 2018]

• N2HDM-like extended scalar sector, *one* discrete \mathbb{Z}_2 symmetry

$$\Phi_1 \to +\Phi_1, \quad \Phi_2 \to -\Phi_2, \quad \Phi_S \to -\Phi_S$$

• $SU(2)_L \times U(1)_Y$ and \mathbb{Z}_2 -invariant tree-level potential:

$$V^{(0)} = m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 + \frac{m_S^2}{2} \Phi_S^2 + \left(\mathbf{A} \Phi_1^{\dagger} \Phi_2 \Phi_S + h.c. \right) + \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + h.c. \right] + \frac{\lambda_6}{4} \Phi_S^4 + \frac{\lambda_7}{2} |\Phi_1|^2 \Phi_S^2 + \frac{\lambda_8}{2} |\Phi_2|^2 \Phi_S^2$$

• general vacuum structure @ $T \neq 0$:

r charge-breaking VEV, $\omega_{\rm CB} = 0$

$$\Phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_1 + i\eta_1 \\ \zeta_1 + \omega_1 + i\Psi_1 \end{pmatrix}, \ \Phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_2 + \omega_{\rm CB} + i\eta_2 \\ \zeta_2 + \omega_2 + i(\Psi_2 + \omega_{\rm CP}) \end{pmatrix}, \ \Phi_s = \zeta_s + \omega_s$$

← CP-violating VEV

• general vacuum structure @ T = 0:

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{1} + i\eta_{1} \\ \zeta_{1} + \nu_{1} + i\Psi_{1} \end{pmatrix}, \quad \Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{2} + i\eta_{2} \\ \zeta_{2} + i\Psi_{2} \end{pmatrix}, \quad \Phi_{S} = \zeta_{S}$$
$$\langle \Phi_{1} \rangle |_{T=0} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \nu_{1} \end{pmatrix}, \quad \langle \Phi_{2} \rangle |_{T=0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \langle \Phi_{S} \rangle |_{T=0} = 0$$

 $\rightarrow \omega_1|_{T=0 \text{ GeV}} = v_1 \equiv v = 246.22 \text{ GeV}$, SM-Yukawa sector and tree-level FCNCs prohibited

• general vacuum structure @ T = 0:

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{1} + i\eta_{1} \\ \zeta_{1} + v_{1} + i\Psi_{1} \end{pmatrix}, \quad \Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{2} + i\eta_{2} \\ \zeta_{2} + i\Psi_{2} \end{pmatrix}, \quad \Phi_{5} = \zeta_{5}$$
$$\langle \Phi_{1} \rangle|_{T=0} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{1} \end{pmatrix}, \quad \langle \Phi_{2} \rangle|_{T=0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \langle \Phi_{5} \rangle|_{T=0} = 0$$

 $\rightarrow \omega_1 |_{T=0 \text{ GeV}} = v_1 \equiv v = 246.22 \text{ GeV}$, SM-Yukawa sector and tree-level FCNCs prohibited

- $\rightarrow \mathbb{Z}_2$ symmetry *unbroken* \Rightarrow conserved quantum number: *dark charge*
 - * Φ_1 (*SM-like particles* with +1): G^{\pm} , G^0 , h
 - * Φ_2 , Φ_S (dark particles with -1): H^{\pm} , h_1 , h_2 , h_3 ($m_{h_1} < m_{h_2} < m_{h_3}$)

• general vacuum structure @ T = 0:

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{1} + i\eta_{1} \\ \zeta_{1} + v_{1} + i\Psi_{1} \end{pmatrix}, \quad \Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{2} + i\eta_{2} \\ \zeta_{2} + i\Psi_{2} \end{pmatrix}, \quad \Phi_{S} = \zeta_{S}$$
$$\langle \Phi_{1} \rangle |_{T=0} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{1} \end{pmatrix}, \quad \langle \Phi_{2} \rangle |_{T=0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \langle \Phi_{S} \rangle |_{T=0} = 0$$

 $\rightarrow \omega_1 |_{T=0 \text{ GeV}} = v_1 \equiv v = 246.22 \text{ GeV}$, SM-Yukawa sector and tree-level FCNCs prohibited

 $\rightarrow \mathbb{Z}_2$ symmetry *unbroken* \Rightarrow conserved quantum number: *dark charge*

*
$$\Phi_1$$
 (*SM-like particles* with +1): G^{\pm} , G^0 , h

- * Φ_2 , Φ_S (*dark particles* with -1): H^{\pm} , h_1 , h_2 , h_3 ($m_{h_1} < m_{h_2} < m_{h_3}$)
- \Rightarrow **DM**: *stable* particle dark matter candidate h_1

• general vacuum structure @ T = 0:

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{1} + i\eta_{1} \\ \zeta_{1} + v_{1} + i\Psi_{1} \end{pmatrix}, \quad \Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{2} + i\eta_{2} \\ \zeta_{2} + i\Psi_{2} \end{pmatrix}, \quad \Phi_{S} = \zeta_{S}$$
$$\langle \Phi_{1} \rangle |_{T=0} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{1} \end{pmatrix}, \quad \langle \Phi_{2} \rangle |_{T=0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \langle \Phi_{S} \rangle |_{T=0} = 0$$

 $\rightarrow \omega_1 |_{T=0 \text{ GeV}} = v_1 \equiv v = 246.22 \text{ GeV}$, SM-Yukawa sector and tree-level FCNCs prohibited

- $\rightarrow \mathbb{Z}_2$ symmetry *unbroken* \Rightarrow conserved quantum number: *dark charge*
 - * Φ_1 (*SM-like particles* with +1): G^{\pm} , G^0 , h
 - * Φ_2 , Φ_S (*dark particles* with -1): H^{\pm} , h_1 , h_2 , h_3 ($m_{h_1} < m_{h_2} < m_{h_3}$)
- \Rightarrow **DM**: *stable* particle dark matter candidate h_1
- \Rightarrow explicit CPV: introduced through Im (A) $\neq 0$
 - \rightarrow CPV after SSB, but vacuum is CP-symmetric \Rightarrow CPV is *explicit*
 - \rightarrow solely in the dark sector h_1, h_2, h_3 : states with mixed CP quantum number
 - ⇒ not constrained by EDM constraints

Lisa Biermann (ITP, KIT)

• general vacuum structure @ T = 0:

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{1} + i\eta_{1} \\ \zeta_{1} + v_{1} + i\Psi_{1} \end{pmatrix}, \quad \Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{2} + i\eta_{2} \\ \zeta_{2} + i\Psi_{2} \end{pmatrix}, \quad \Phi_{S} = \zeta_{S}$$
$$\langle \Phi_{1} \rangle |_{T=0} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{1} \end{pmatrix}, \quad \langle \Phi_{2} \rangle |_{T=0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \langle \Phi_{S} \rangle |_{T=0} = 0$$

 $\rightarrow \omega_1 |_{T=0 \text{ GeV}} = v_1 \equiv v = 246.22 \text{ GeV}$, SM-Yukawa sector and tree-level FCNCs prohibited

- $\rightarrow \mathbb{Z}_2$ symmetry *unbroken* \Rightarrow conserved quantum number: *dark charge*
 - * Φ_1 (*SM-like particles* with +1): G^{\pm} , G^0 , h
 - * Φ_2 , Φ_S (*dark particles* with -1): H^{\pm} , h_1 , h_2 , h_3 ($m_{h_1} < m_{h_2} < m_{h_3}$)
- \Rightarrow **DM**: *stable* particle dark matter candidate h_1
- \Rightarrow explicit CPV: introduced through Im (A) $\neq 0$
 - \rightarrow CPV after SSB, but vacuum is CP-symmetric \Rightarrow CPV is *explicit*
 - \rightarrow solely in the dark sector h_1, h_2, h_3 : states with mixed CP quantum number
 - ⇒ not constrained by EDM constraints
- \Rightarrow 'CP in the Dark' CPV + DM + SFOEWPT (?)

Lisa Biermann (ITP, KIT)

- true vacuum state @ finite temperature (FT) including radiative corrections = global minimum of the **effective potential** @ **FT**
- general one-loop effective potential @ FT splits into temperature-dependent and independent part [L. Dolan, R. Jackiw, 1974]

- true vacuum state @ finite temperature (FT) including radiative corrections = global minimum of the effective potential @ FT
- general one-loop effective potential @ FT splits into temperature-dependent and independent part [L. Dolan, R. Jackiw, 1974]

• V^{CT} absorbs NLO scalar mass and angle shift [P. Basler et al., 2017]

$$0 = \partial_{\phi_i} (V^{CW} + V^{CT}|_{\vec{\omega} = \vec{\omega}_{tree}})$$
$$0 = \partial_{\phi_i} \partial_{\phi_j} (V^{CW} + V^{CT}|_{\vec{\omega} = \vec{\omega}_{tree}})$$

BSMPT [P. Basler, M. Mühlleitner, J. Müller, 2018/20] https://github.com/phbasler/BSMPT

global minimization of the one-loop corrected effective potential @ T ∈ {0, 300} GeV in non-zero FT VEV space \$\vec{\omega} → \text{get}(\$\vec{\omega}_1,\$\vec{\omega}_2,\$\vec{\omega}_{\mathcal{CB}},\$\vec{\omega}_{\mathcal{CP}},\$\vec{\omega}_{\mathcal{S}}\$) @ T

BSMPT [P. Basler, M. Mühlleitner, J. Müller, 2018/20] https://github.com/phbasler/BSMPT

global minimization of the one-loop corrected effective potential @ T ∈ {0, 300} GeV in non-zero FT VEV space \$\vec{\overline{\overlin}\overlin{\overline{\overline{\overline{\overlin{\uverline{\overlin}\overlin{\overlin{\uverline{\overlin}\overlin{\overlin{\uve

• temperature-dependent EW VEV v(T):

$$v(T) = \sqrt{\overline{\omega}_1^2 + \overline{\omega}_2^2 + \overline{\omega}_{\mathrm{CB}}^2 + \overline{\omega}_{\mathrm{CP}}^2}$$

• critical temperature T_c : $V^{(1)}(\bar{\omega} = 0, T_c) \equiv V^{(1)}(\bar{\omega}_c \neq 0, T_c)$ \rightarrow bisection method for T_c

BSMPT [P. Basler, M. Mühlleitner, J. Müller, 2018/20] https://github.com/phbasler/BSMPT

global minimization of the one-loop corrected effective potential @ T ∈ {0, 300} GeV in non-zero FT VEV space \$\vec{\overline{\overlin}\overlin{\overline{\overline{\overline{\overlin{\uverline{\overlin}\overlin{\overlin{\uverline{\overlin}\overlin{\overlin{\uve

• temperature-dependent EW VEV v(T):

$$v(T) = \sqrt{\overline{\omega}_1^2 + \overline{\omega}_2^2 + \overline{\omega}_{\rm CB}^2 + \overline{\omega}_{\rm CP}^2}$$

• critical temperature T_c : $V^{(1)}(\bar{\omega} = 0, T_c) \equiv V^{(1)}(\bar{\omega}_c \neq 0, T_c)$ \rightarrow bisection method for T_c

$$\Rightarrow$$
 SFOEWPT:

$$\xi_c \equiv \frac{v_c}{T_c} \gtrsim 1$$

BSMPT [P. Basler, M. Mühlleitner, J. Müller, 2018/20] https://github.com/phbasler/BSMPT

global minimization of the one-loop corrected effective potential @ T ∈ {0, 300} GeV in non-zero FT VEV space \$\vec{\overline{\overlin}\overlin{\overline{\overline{\overline{\overlin{\uverline{\overlin}\overlin{\overlin{\uverline{\overlin}\overlin{\overlin{\uve

• temperature-dependent EW VEV v(T):

$$v(T) = \sqrt{\overline{\omega}_1^2 + \overline{\omega}_2^2 + \overline{\omega}_{\rm CB}^2 + \overline{\omega}_{\rm CP}^2}$$

Г

• critical temperature T_c : $V^{(1)}(\bar{\omega} = 0, T_c) \equiv V^{(1)}(\bar{\omega}_c \neq 0, T_c)$ \rightarrow bisection method for T_c

$$\Rightarrow$$
 SFOEWPT: ξ_c

$$\xi_c \equiv rac{v_c}{T_c} \gtrsim 1$$

- viable parameter points
 - * pass constraints imposed by: ScannerS [R. Coimbra et al., 2013] [M. Mühlleitner et al., 2020] BSMPT [P. Basler, M. Mühlleitner, J. Müller, 2018/20]
 - * BR $(h \to inv.) < 0.11$ [M. Aaboud et al., 2019]
 - * $\mu_{h \to \gamma \gamma} = 1.12 \pm 0.09$ [A. Sirunyan et al., 2021]

Lisa Biermann (ITP, KIT)

Results: Mass Parameter Distributions for an SFOEWPT

Results: Mass Parameter Distributions for an SFOEWPT

 \Rightarrow find SFOEWPT (and NLO-stable) points distributed all over allowed^(*) parameter space

(*): by Higgs constraints, DM constraints, theoretical constraints.

- neither requirement of NLO-VEV stability nor SFOEWPT further constrains the parameter space
- restricted $m_{H^{\pm}}$ -range due to $\mu_{\gamma\gamma}$ cut (see Slide 8)

Lisa Biermann (ITP, KIT)

- tree-level couplings of *h* identical to those of SM Higgs boson
- only presence of dark particles can change $BR(h \rightarrow \gamma \gamma)$

- tree-level couplings of h identical to those of SM Higgs boson
- only presence of dark particles can change $BR(h \rightarrow \gamma \gamma)$
 - $\rightarrow H^{\pm}$ -decay into photon pair
 - \rightarrow *h*-decay into neutral DM particles h_i , $i \in \{1, 2, 3\}$

- tree-level couplings of h identical to those of SM Higgs boson
- only presence of dark particles can change $BR(h \rightarrow \gamma \gamma)$
 - $\rightarrow H^{\pm}$ -decay into photon pair
 - \rightarrow *h*-decay into neutral DM particles *h_i*, *i* \in {1, 2, 3}
- increase towards smaller $m_{H^{\pm}}$ (governed by λ_3)
- upper bound in CMS-plot: BFB and unitarity bounds restrict maximal λ_3

- tree-level couplings of h identical to those of SM Higgs boson
- only presence of dark particles can change $BR(h \rightarrow \gamma \gamma)$
 - $\rightarrow H^{\pm}$ -decay into photon pair
 - \rightarrow *h*-decay into neutral DM particles h_i , $i \in \{1, 2, 3\}$
- increase towards smaller $m_{H^{\pm}}$ (governed by λ_3)
- upper bound in CMS-plot: BFB and unitarity bounds restrict maximal λ_3
- \Rightarrow future increased precision on $\mu_{\gamma\gamma}$ can cut the parameter space on $m_{H^{\pm}}$ substantially

Results: BR $(h \rightarrow inv.)$

Results: BR $(h \rightarrow inv.)$

- SFOEWPT points scattered across allowed ScannerS parameter space
- BR($h \rightarrow \text{inv.}$) strongly correlated with μ_{VV} (V = Z, W) (gauge boson signal strength), agree with results for *fully dark phase* of N2HDM [I. Engeln et al., 2020]
- \rightarrow for $\mu_{VV} \rightarrow 1$, SM-like Higgs BR converges to SM value (invisible decay not allowed)
- ⇒ future precise measurements of BR(h → inv.) and μ_{VV} can constrain parameter space, however *no* further insights into strength of the EWPT

→ @ FT: $|\overline{\omega}_{CP}| \neq 0$ possible for SFOEWPT points \Leftrightarrow @ T = 0 GeV: $\overline{\omega}_{CP}|_{T=0 \text{ GeV}} = 0$ → CPV only possible explicitly (Im(A) $\neq 0$) → no clear correlation - but: $|\overline{\omega}_{CP}| > 0$ only for Im(A) $\neq 0$

Lisa Biermann (ITP, KIT)

• two different VEV patterns in detail:

• two different VEV patterns in detail:

- → @ FT: \mathbb{Z}_2 symmetry is broken → dark charge no longer conserved → dark sector **mixes** with SM-like particles
- ⇒ additional non-standard CPV transferred to the SM-like couplings to fermions @ FT!

$$f_{\chi\chi} \cdot \sigma_{\rm SI,\,DM-nucl.} \equiv \frac{\Omega_{\rm prod}h^2}{\Omega_{\rm obs}h^2} \cdot \sigma_{\rm SI,\,DM-nucl.}$$

Viable SFOEWPT parameter points

- \Rightarrow compatible with *relic density* ($< \Omega h^2$)
- \Rightarrow above neutrino floor
- \Rightarrow testable at future *direct detection* experiments

 $\sigma_{\rm SI, DM-nucl.}$

 $\Omega_{\text{prod}}h^2$

 $f_{\chi\chi} \cdot \sigma_{\text{SI, DM-nucl.}} \equiv$

Conclusion

- dynamical generation of the baryon asymmetry of the universe (BAU) possible if *Sakharov* conditions fulfilled
- electroweak baryogenesis: fulfill Sakharov conditions with
 - BSM models
 - non-standard *CP-violation* (CPV)
 - strong first-order electroweak phase transition (SFOEWPT)
- 'CP in the Dark': special N2HDM + one discrete \mathbb{Z}_2 symmetry
 - dark sector with DM candidate h₁
 - explicit CPV in the dark sector at zero temperature
- \Rightarrow **BSMPT**: global minimization of the one-loop corrected effective potential at finite temperature
- → viable SFOEWPT parameter points for 'CP in the Dark'
 - · within reach of future direct detection experiments
 - ⇒ show spontaneous CPV at finite temperature!

 \rightarrow **Open question:** Can these points successfully generate the BAU?

Thanks for your attention!

Lisa Biermann (ITP, KIT)

Benchmark Points

All points have: $\lambda_1 \simeq 0.258$, $m_{11}^2 \simeq -7824 \text{ GeV}^2$

	point	$m_{22}^2 [\text{GeV}^2] \qquad m_S^2 [\text{GeV}^2]$		Re (A	Re (A) [GeV] Im (λ_1			
_	no sponCPV sponCPV	96 703.414 32 442.9 65 258.809 36 279.8		949 159.627 847 279.502		-325.391 3.5 -326.645 3.6				
_	point	λ_3	λ_4	λ_5		λ_6	λ_7	λ_8		
	no spon CPV spon CPV	$-0.796 \\ -0.821$	0.787 0.220	-(-(0.055 0.371	10.446 4.715	7.596 7.760	4.683 14.781		
point	<i>m</i> ₁₁ +	<i>m</i> _{<i>h</i>} ,	,	nha	mha		T _c	vc		
no spon spon CP	CPV 269.386 V 200.940	241.71 62.68	18 30 0 21	8.943 8.700	549.265 560.206	14	144.21 189.77		236.53 235.85	
point	ξc	$\overline{\omega}_{CB}$		$\overline{\omega}_1$	$\overline{\omega}_2$	ō	<i>ω</i> _{CP}	$\overline{\omega}_S$		
no spon spon CP	CPV 1.64 V 1.24	-8.977 × -2.212 ×	$ \begin{array}{ccc} 10^{-7} & 23 \\ 10^{-5} & 22 \end{array} $	36.53 26.46	$9.093 \times 10^{-52.72}$	⁻⁷ -3.79	3×10^{-7} 9.52	4.604 × -27.	10 ⁻⁷ 58	

Baryon Asymmetry of the Universe (BAU)

initial: *Big Bang* (symmetric universe) \Leftrightarrow today: **BAU** (asymmetric universe)

$$\eta \equiv rac{n_b - ar{n}_b}{n_\gamma} \simeq rac{n_b}{n_\gamma} \simeq 6.1 imes 10^{-10}$$
 [Planck, 2018]

How can we generate a non-zero baryon asymmetry of the universe?

[Sakharov, 1967]: dynamical generation of a BAU with an initially symmetric state possible if

condition								
existence of <i>B</i> violating processes	⇒	sphaleron-mediated @ $T > T_{EW} = 100 \text{ GeV}$ [N. Manton, 1983], [F. Klinkhammer, N. Manton, 1984]						
$\mathcal C$ and $\mathcal {CP}$ violation (CPV)	\Rightarrow	<i>Cabibbo-Kobayashi-Maskawa</i> mechanism (?) [N. Cabibbo, 1963], [M. Kobayashi, T. Maskawa, 1973]						
departure from thermal equilibrium	\Rightarrow	electroweak phase transition (EWPT) [D. Kirznits, 1972], [L. Dolan, R. Jackiw, 1974]						
Lisa Biermann (ITP KIT) EV	VPT in 'CP i	in the Dark' 08.11.2022 2/3						

Electroweak Baryogenesis (EWBG) [D. Morrissey, M. Ramsey-Musolf, 2012] V_{eff}

- EWBG takes place around $T \sim T_{\rm EW}$
- EWPT happens and bubbles with non-zero vacuum expectation value (VEV) are created and expand
- necessary departure from thermal equilibrium achieved through strong first-order EWPT (SFOEWPT)

$$V(v = 0, T_c) = V(v \neq 0, T_c)$$

- How do we see this in the potential? \rightarrow global minimum jumps from symmetric to broken minimum @ T_c
- \rightarrow 'strong': conservation of BAU through sufficient suppression of the sphaleron rate inside the bubbles

irvon-wash-out condition* I. Quiros, 1994]

 $T = T_2 > T_C$

 $T = T_C$

 $T = T_1 < T_C$

- EWPT in SM only smooth cross-over [K. Kajantie et al., 1996]
- need BSM models that enable an SFOEWPT* + non-standard CPV

Lisa Biermann (ITP, KIT)