Discrete Goldstone Bosons

Rachel Houtz DISCRETE 2022 Baden-Baden November, 2022

In Collaboration with Victor Enguita-Vileta and Belen Gavela (IFT), Pablo Quilez (UCSD), arXiv:2205.09131

Collaborators on this Work

Giving a talk on Wednesday

Victor Enguita-Vileta

Prof. Belen Gavela

Pablo Quilez

Higgs Naturalness

The leading quantum correction to the Higgs mass:

Expect new physics at the TeV scale

Papucci, Ruderman, Weiler, arXiv:1110.6926

- Why is $m_h^2 \ll \Lambda_{\mathrm{NP}}^2$?
- More generally, classify ways to separate:

CMS, arXiv:2107.10892

Pseudo-Goldstone Bosons

- Many examples of pGBs:
 - * SM pions $m_\pi \ll \Lambda_{
 m QCD}$
 - The axion $m_a f_a \approx m_\pi f_\pi$
- Many models identifying the Higgs as a pGB
 _{Kaplan, Georgi (1984)}

Dugan, Georgi, Kaplan (1985)

Technically natural

Symmetry explicitly broken

Exact Symmetry restored

pGB's and Discrete Symmetries

- Additional Z_N symmetries can enhance the mass protection of axionlike pGB fields
- Higher N leads to greater suppression:

$$Z_N \xrightarrow{N \to \infty} U(1) \qquad m_a \to 0$$

$$m_a \to 0$$

Hook, arXiv:1802.10093

Di Luzio, Gavela, Quilez, **Ringwald, arXiv:2102.00012**

Das, Hook, arXiv:2006.10767

Plots lifted from Di Luzio, Gavela, Quilez, Ringwald, arXiv:2102.00012

Non-Abelian Discrete A_4

- * A_4 is the simplest non-Abelian discrete group with a three-dimensional irreducible representation
 - useful in flavor model building, can contain three generations

Ma, Rajasekaran (2001) Babu, Ma, Valle (2002)

Altarelli, Feruglio (2005)

• A_4 group elements: all even permutations of four objects

Even # of swaps

Ishimori, et al, arXiv:1003.3552

Properties of the A_4 Group

Even permutations of four elements

- * t generator: $(a,b,c,d) \rightarrow (b,c,a,d)$
 - * Eight "face rotations": (t, sts, st, ts) (t^2, tst, st^2, t^2s)
- * s generator: $(a,b,c,d) \rightarrow (b,a,d,c)$
 - * Three "double flips": (s, t^2s, tst^2)
 - \rightarrow 4!/2 = 12 total group elements

Symmetries of the tetrahedron

Properties of the A_4 Group

- Irreducible representations of A_4 :
 - Trivial singlet (invariant)
 - Nontrivial singlets (pick up phases)
 - **Triplets**

Of interest to discrete symmetry model builders:

 $\tilde{\epsilon}_{ijk}A_iB_j$

$$3 \times 3 = 1 + 1' + 1'' + 3 + 3'$$

$$A_{3} \times B_{3} \ni \begin{pmatrix} \{A_{y}, B_{z}\} \\ \{A_{z}, B_{x}\} \\ \{A_{x}, B_{y}\} \end{pmatrix}_{3} + \begin{pmatrix} [A_{y}, B_{z}] \\ [A_{z}, B_{x}] \\ [A_{x}, B_{y}] \end{pmatrix}_{3}$$

$$\tilde{\epsilon}_{ijk} = |\epsilon_{ijk}|$$

$$\tilde{\epsilon}_{ijk} A_{i}B_{j}$$

$$\tilde{\epsilon}_{ijk} = |\epsilon_{ijk}|$$

Nonlinearly Realized Discrete A_4

Das, Hook, arXiv:2006.10767

The quadratically divergent mass contributions stemming from SO(3)-breaking terms cancel:

$$\mathcal{L}_{\text{int}} = y_s \pi_1 \left(\bar{\Psi}_2 \Psi_3 + \bar{\Psi}_3 \Psi_2 \right) + y_s \pi_2 \left(\bar{\Psi}_3 \Psi_1 + \bar{\Psi}_1 \Psi_3 \right) + y_s f \left(1 - \frac{1}{2} \frac{\pi_1^2 + \pi_2^2}{f^2} \right) \left(\bar{\Psi}_1 \Psi_2 + \bar{\Psi}_2 \Psi_1 \right)$$

Similar to Little Higgs models

Arkani-Hamed, Cohen, Gregoire, Wacker (2002)

Arkani-Hamed, Cohen, Katz, Nelson (2002)

General Nonlinear Discrete Symmetries

* Consider a general scalar field Φ in an irreducible m-dimensional real representation of some discrete group D:

$$\Phi \equiv (\phi_1, \phi_2, ..., \phi_m)$$

- * Nonlinearity constraint: $\Phi^T \Phi = \phi_1^2 + \phi_2^2 + ... + \phi_m^2 = f^2$
- * Reduces the number of dof's by 1, resulting in a set of $\,m-1\,$ light spin-0 particles
 - These are the discrete Goldstone Bosons (dGB)
 - If D is embedded in a continuous group G, these are a class of pseudo-Goldstone bosons

The EFT for A_4 dGBs

- * Consider a scalar field in the triplet of A_4 : $\Phi \equiv (\phi_1,\phi_2,\phi_3)$
- * The full A_4 invariant potential is a function of the primary invariants:

$$\mathcal{I}_2 = \phi_i \phi_i = \phi_1^2 + \phi_2^2 + \phi_3^2 \qquad \qquad \text{SO(3) invariant}$$

$$\mathcal{I}_3 = \prod_{i < j < k} \phi_i \phi_j \phi_k = \phi_1 \phi_2 \phi_3$$

$$\mathcal{I}_4 = \sum_i \phi_i^4 = \phi_1^4 + \phi_2^4 + \phi_3^4$$
SO(3) breaking

We can expand this out in terms of invariants as:

$$(\Lambda \le 4\pi f)$$

$$V_{\text{dGB}} = f(\mathcal{I}_2, \mathcal{I}_3, \mathcal{I}_4) = f^2 \Lambda^2 \left[\hat{c}_3 \frac{\mathcal{I}_3}{f^3} + \hat{c}_4 \frac{\mathcal{I}_4}{f^4} + \hat{c}_6 \frac{\mathcal{I}_6}{f^6} + \hat{c}_7 \frac{\mathcal{I}_7}{f^7} + \dots \right]$$

ullet Below Λ , the nonlinearity constraint holds: $\mathcal{I}_2=f^2$

The dGB Potential

The most general potential:

$$V_{\text{dGB}} = f^2 \Lambda^2 \left[\hat{c}_3 \frac{\mathcal{I}_3}{f^3} + \hat{c}_4 \frac{\mathcal{I}_4}{f^4} + \hat{c}_6 \frac{\mathcal{I}_6}{f^6} + \hat{c}_7 \frac{\mathcal{I}_7}{f^7} + \dots \right]$$

- If the \hat{c}_n are all $\mathcal{O}(1)$, then all terms will contribute equally
- It is easy, however, to arrange for lower order terms to dominate
- If the invariant operators are generated by renormalizable interactions:

$$\hat{c}_n \sim \epsilon^n$$

* Being a *little* less agnostic about the UV theory can allow us to talk about scales that are not f

Additional \hat{c}_n Suppression

* Consider that higher dimensional operator interactions are mediated by a fermion with mass ${\cal M}$

$$\mathcal{L} = \frac{M^4}{16\pi^2} \sum_{n} \left(y \frac{\Phi}{M} \right)^n = \Lambda^2 f^2 \sum_{n} y^n \left(\frac{\Lambda}{M} \right)^{n-4} \left(\frac{\Phi}{\Lambda} \right)^n$$

* Allows us to estimate the sizes of \hat{c}_n :

- $\hat{c}_n \sim y^n \left(\frac{\Lambda}{M}\right)^{n-4}$
- * We can say that the n>4 terms will be subdominant so long as either:
 - y < 1

(for $\mathcal{I}_3 > \mathcal{I}_4$, we must assume y < 1)

• $M > \Lambda$

The dGB Potential

Invariant interactions generate seemingly destabilizing mass contributions:

These contributions are rendered harmless by the nonlinearity constraint

$$\Phi^T \Phi = \phi_1^2 + \phi_2^2 + \phi_3^2 = f^2$$

$$\Rightarrow \mathcal{I}_2 = f^2 \qquad \Longrightarrow \text{Non-dynamical}$$

* Nothing proportional to \mathcal{I}_2 will generate mass terms for the pions (but other invariants will)

The Natural Minima

$$V_{\text{dGB}} = f^2 \Lambda^2 \left[\hat{c}_3 \frac{\mathcal{I}_3}{f^3} + \hat{c}_4 \frac{\mathcal{I}_4}{f^4} + \hat{c}_6 \frac{\mathcal{I}_6}{f^6} + \hat{c}_7 \frac{\mathcal{I}_7}{f^7} + \dots \right] \longrightarrow \text{Complicated}$$

- ullet The space spanned by \mathcal{I}_3 and \mathcal{I}_4 given the nonlinearity constraint is bounded
- At the boundaries, the trajectories must reverse, $\partial \mathcal{I}_i/\partial \phi_j$ must change signs

 The natural extrema live on the boundaries. Where the edges meet at points give maximally natural extrema

The dGB Fields

 Once a minimum is identified, one can write down the invariants in terms of the dGB fields expanded about that minimum

$$I_3 = \frac{f}{\sqrt{3}} \left[-\frac{f^2}{3} + \pi_1^2 + \pi_2^2 - \frac{1}{3\sqrt{2}f} \left(\pi_1^3 - 3\pi_1 \pi_2^2 \right) - \frac{17}{24f^2} \left(\pi_1^2 + \pi_2^2 \right)^2 \right] + \dots$$

$$I_4 = \frac{4f^2}{3} \left[\frac{f^2}{4} + \pi_1^2 + \pi_2^2 + \frac{1}{\sqrt{2}f} \left(\pi_1^3 - 3\pi_1 \pi_2^2 \right) - \frac{29}{24f^2} \left(\pi_1^2 + \pi_2^2 \right)^2 \right] + \dots$$

• The Z_3 symmetry is manifest, which can be seen by looking at the invariants of Z_3 :

$$\mathcal{I}_2^{(2,Z_3)} = \pi_1^2 + \pi_2^2$$
$$\mathcal{I}_3^{(2,Z_3)} = \pi_1^3 - 3\pi_1\pi_2^2$$

degenerate dGBs

The dGB Masses

The \mathcal{I}_3 and \mathcal{I}_4 will source mass terms for the dGBs, and these will be quadratically sensitive to f

$$m_{\pi}^{2} = \left(\frac{2}{\sqrt{3}}\hat{c}_{3} + \frac{8}{3}\hat{c}_{4}\right)f^{2} + \left(-\frac{17}{12\sqrt{3}\pi^{2}}\hat{c}_{3} - \frac{29}{9\pi^{2}}\hat{c}_{4}\right)f^{2}$$

What does it mean for the dGB to be light when f is the only scale present?

$$m_{\pi}^2 \sim \hat{c}_{3,4} f^2$$
 ,

$$m_\pi^2 \Big|_{\text{loop}} \sim 10\% \ m_\pi^2 \Big|_{\text{tree}}$$
 \longrightarrow Decently stable

The dGB Mass Protection

* Consider again the theory above f with a single fermion with mass M:

* Above M, the $> \log$ divergent diagrams we can make (at one loop) are:

ullet Below M, we have more operators, and could be worried about diagrams like:

 $\sim \hat{c}_6\,\mathcal{I}_6\frac{M^2}{f^2} \qquad \Longrightarrow \text{Sourcing an } \mathcal{I}_4 \text{ , which we know contributes}$ to the pion mass

The dGB Mass Protection

* Consider again the theory above f with a single fermion with mass M:

* Above M, the $>\log$ divergent diagrams we can make (at one loop) are:

ullet Below M, we have more operators, and could be worried about diagrams like:

$$\sim \hat{c}_6 \, \mathcal{I}_6 \frac{M^2}{f^2} \, \sim y^6 \left(\frac{f}{M}\right)^2 \frac{M^2}{f^2} \qquad \text{where} \quad \hat{c}_n \sim y^n \left(\frac{f}{M}\right)^{n-4}$$

$$\longrightarrow \text{M sensitivity cancels out}$$

$$A_4 \rightarrow Z_3$$

- * Two degenerate dGB, guaranteed by the preserved Z_3 symmetry:
- $m_{\pi_1}^2 = m_{\pi_2}^2$

* Assume the \mathcal{I}_3 operator is the leading term:

$$\mathcal{L}_{
m int} \propto rac{1}{M^m} \mathcal{O}^{
m SM} \mathcal{I}_3$$

If the SM production process is uncharged under the discrete group:

$$\mathcal{I}_3 \ni \frac{f}{\sqrt{3}} \left[\pi_1^2 + \pi_2^2 + \frac{1}{3\sqrt{2}f} \left(\pi_1^3 - 3\pi_1 \pi_2^2 \right) - \frac{17}{24f^2} \left(\pi_1^2 + \pi_2^2 \right)^2 \right]$$

2-pion production

3-pion production

4-pion production

 Because these interactions all stem from the same operator, there is a consistent pattern of production cross sections

$$\mathcal{L}_{
m int} \propto rac{1}{M^m} \mathcal{O}^{
m SM} \mathcal{I}_3$$

$$\frac{\sigma \left(SM \to 2\pi \right)}{\sigma \left(SM \to 3\pi \right)} = 2f^2 \frac{\Pi_2}{\Pi_3}$$

$$\frac{\sigma \left(SM \to 3\pi\right)}{\sigma \left(SM \to 4\pi\right)} = \frac{36f^2}{19(17)^2} \frac{\Pi_3}{\Pi_4}$$

* This cross section information tells us about the A_4 symmetry, not just the preserved Z_3

Plot lifted from Giudice, Gripaios, Mahbubani, arXiv:1108.1800

- In a collider, we can disentangle multiparticle production via tails of kinematic variables like E_T
- Disentangling multicomponent DM in direct detection experiments is possible, but not promising for the degenerate case considered here

Herrero-Garcia, Scaffidi, White, Williams, arXiv:1709.01945

Higher Non-Abelian Discrete Symmetry Example

The Triplet of A_5

Even permutations of: $(x_1, x_2, x_3, x_4, x_5)$

- Irreducible representations of A_5 : 1 (3) 3' 4 5
- A_4 is a subgroup of A_5
- * Consider the dGB's stemming from a scalar field in the **triplet** representation of A_5

* The primary invariants of the triplet of A_5 :

$$\mathcal{I}_{2}^{(\mathbf{3},A_{5})} = \mathcal{I}_{2}$$

$$\mathcal{I}_{6}^{(\mathbf{3},A_{5})} = 22\mathcal{I}_{3}^{2} + \mathcal{I}_{2}\mathcal{I}_{4} - 2\sqrt{5}\mathcal{I}_{6}$$

$$\mathcal{I}_{10}^{(\mathbf{3},A_{5})} = \mathcal{I}_{2}\mathcal{I}_{4}^{2} + 38\mathcal{I}_{3}^{2}\mathcal{I}_{4} - \frac{7}{11}\mathcal{I}_{2}^{3}\mathcal{I}_{4} - \frac{128}{11\sqrt{5}}\mathcal{I}_{2}^{2}\mathcal{I}_{6} + \frac{6}{\sqrt{5}}\mathcal{I}_{4}\mathcal{I}_{6}$$

where $(\mathcal{I}_2, \mathcal{I}_3, \mathcal{I}_4, \mathcal{I}_6)$ are the invariants of A_4

The Lighter A_5 dGB

The most general potential of the dGB's:

$$V_{\text{dGB}} = f^2 \Lambda^2 \left[\hat{c}_6 \frac{\mathcal{I}_6}{f^6} + \hat{c}_{10} \frac{\mathcal{I}_{10}}{f^{10}} + \hat{c}_{12} \frac{\mathcal{I}_6^2}{f^{12}} + \hat{c}_{15} \frac{\mathcal{I}_{15}}{f^{15}} + \dots \right]$$

- * Note that the A_5 symmetry forbids \hat{c}_n for n < 6
 - → All terms in the potential come from higher dimensional operators
 - \blacksquare This leads to an enhanced suppression for m_π :

Going to larger symmetry groups gives even stronger suppression

Conclusion

Nonlinearly realized discrete symmetries produce discrete Goldstone bosons

dGBs have enhanced protection from quadratic divergences

$$\hat{c}_n \sim y^n \left(\frac{f}{M}\right)^{n-4}$$

- Wrote down an EFT of dGBs and classified its general features
 - Degenerate pions reflecting preserved low energy symmetries
 - Multi-particle invisible production
 - Cross section ratios give access to nonlinearly realized symmetry
- For more details, check out Victor's talk in the parallel session

Thank you!

Back-up Slides

* In a collider, we can disentangle multi-particle production via tails of kinematic variables like E_T

$$m_T = m_V + p \ell_I^2 + 2\left(\sqrt{p_T^2 \left(p_T^2 + m_V^2\right)} - p_T \cdot p_T\right)$$

Plot lifted from Giudice, Gripaios, Mahbubani, arXiv:1108.1800

Works for heavy invisible as well:

			Exponent	
Production	Observable	Invisibles	$\mu = 0$	$\mu \neq 0$
Single	m_T	n	$n-\frac{3}{2}$	$\frac{3n}{2} - 2$
Symmetric pair	m_{T2}	n = k + l	$k + l - \frac{3}{2}$	$\frac{3(k+l)}{2} - \frac{5}{2}$
Asymmetric pair	m_{T2}	n=k+l, k< l	2k-1	1.5
-	m_V	n	2n-1	$\frac{3n}{2} - 1$

 Disentangle scenarios by power law scaling, but there are some degeneracies that would need to be teased apart

Nonlinearly Realized Discrete A_4

Das, Hook, arXiv:2006.10767

* The field ϕ has an SO(3) invariant potential in the UV:

$$V(\phi) = -\frac{m^2}{2}\phi^T\phi + \frac{\lambda}{4}\left(\phi^T\phi\right)^2$$

• SO(3) is broken by A_4 invariant Yukawa interactions:

$$\mathcal{L}_{\text{int}} = \underbrace{y_a \epsilon^{ijk} \bar{\psi}_i \psi_j \phi_k}_{\text{SO(3) invariant}} + \underbrace{y_s \tilde{\epsilon}^{ijk} \bar{\psi}_i \psi_j \phi_k}_{\text{SO(3) breaking}}$$

$$\tilde{\epsilon}_{ijk} = |\epsilon_{ijk}|$$

• Upon SSB: $SO(3) \rightarrow SO(2)$

$$\phi(\pi_1, \pi_2) = \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix} = \exp \begin{bmatrix} \frac{1}{f} \begin{pmatrix} 0 & 0 & \pi_1 \\ 0 & 0 & \pi_2 \\ -\pi_1 & -\pi_2 & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ f \end{pmatrix}$$

Nonlinearly Realized Discrete A_4

Das, Hook, arXiv:2006.10767

* The pions still have a nonzero mass from the SO(3)-breaking terms

 Nonlinearly realized A_4 offers protection and guarantees nonzero mass for associated light pGB fields

→ How general is this?

More Discrete Groups: A_N , S_N

A_4 Tetrahedron

Even permutations of: (x_1, x_2, x_3, x_4)

A_5 Icosahedron

Even permutations of: $(x_1, x_2, x_3, x_4, x_5)$

Higher A_N

Even permutations of N objects:

$$(x_1, x_2, ..., x_N)$$

S_3 Triangle

All permutations of: (x_1, x_2, x_3)

S_4 Cube

All permutations of: (x_1, x_2, x_3, x_4)

Higher S_N

All permutations of N objects:

$$(x_1, x_2, ..., x_N)$$

The Minima of $V_{ m dGB}$

- * Next, we want to parameterize the low energy theory after $V_{\rm dGB}$ takes a vev
- $V(\Phi)$ is a function of the primary invariants:

$$V(\Phi) = f(I_3, I_4)$$

 \bullet The critical points of V occur when:

Depends on the particular form of the potential

Depends on the structure of the invariants

The dGB Fields

Expanding ϕ around its minimum gives the dGB fields:

$$\phi(\pi_1, \pi_2) = \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix} = \exp \left[\frac{1}{f} \begin{pmatrix} 0 & 0 & \pi_1 \\ 0 & 0 & \pi_2 \\ -\pi_1 & -\pi_2 & 0 \end{pmatrix} \right] \begin{pmatrix} 0 \\ 0 \\ f \end{pmatrix}$$

Point	ϕ_1	ϕ_2	ϕ_3	Little group	Nature
A	0 0 ±1	0 ± 1	±1 0 0	Z_2	Saddles
В	$\begin{vmatrix} \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ \pm \frac{1}{\sqrt{3}} \end{vmatrix}$	$-\frac{\frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}}}$ $-\frac{1}{\sqrt{3}}$	$ \begin{array}{c} \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ \mp \frac{1}{\sqrt{3}} \end{array} $	Z_3	Minima
C	$\begin{vmatrix} -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \pm \frac{1}{\sqrt{3}} \end{vmatrix}$	$-\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{3}}$ $\mp \frac{1}{\sqrt{3}}$	Z_3	Minima

Need to ensure the z-direction lines up with the unbroken generator:

$$\mathcal{I}_i'(\Phi)=\mathcal{I}_i(R^{-1}\Phi)$$
 , $R\in SO(3)$ such that $\Phi_s'=R\Phi_s=(0,0,f)$

$$R \in SO(3)$$

$$\Phi_s' = R\Phi_s = (0, 0, f)$$

Phenomenology of $A_5 \rightarrow Z_5$

$$A_5 \to Z_5$$

- Two degenerate dGB, guaranteed by the preserved Z_5 symmetry:
- $m_{\pi_1}^2 = m_{\pi_2}^2$

Assume the \mathcal{I}_6 operator is the leading term:

$$\mathcal{L}_{\mathrm{int}} \propto \frac{1}{M^m} \mathcal{O}^{\mathrm{SM}} \mathcal{I}_6^{(\mathbf{3}, A_5)} + \dots$$

If the SM production process is uncharged under the discrete group:

$$\mathcal{I}_{6}^{(\mathbf{3},A_{5})} = \frac{32}{5} f^{4} \left[\frac{f^{2}}{32} + \pi_{1}^{2} + \pi_{2}^{2} - \frac{31}{12f^{2}} \left(\pi_{1}^{2} + \pi_{2}^{2} \right)^{2} - \frac{1}{4f^{3}} \left(\pi_{1}^{5} - 10\pi_{1}^{3}\pi_{2}^{2} + 5\pi_{1}\pi_{2}^{4} \right) \right]$$

2-pion production 4-pion production

5-pion production

Phenomenology of $A_5 o Z_5$

 Because these interactions all stem from the same operator, there is a consistent pattern of production cross sections

$$\mathcal{L}_{\mathrm{int}} \propto rac{1}{M^m} \mathcal{O}^{\mathrm{SM}} \mathcal{I}_6^{(\mathbf{3}, A_5)}$$

$$\frac{\sigma(SM \to 4\pi)}{\sigma(SM \to 5\pi)} = \frac{19(31)^2 f^2}{3(45)^2} \frac{\Pi_4}{\Pi_5} = \frac{19(31)^2 (8\pi)^2}{45^2} \frac{f^2}{E_{CM}^2}$$

$$\frac{\sigma(SM \to 2\pi)}{\sigma(SM \to 4\pi)} = \frac{18f^4}{19(31)^2} \frac{\Pi_2}{\Pi_4} = \frac{216(4\pi)^4}{19(31)^2} \frac{f^4}{E_{CM}^4}$$

* This cross section information tells us about the A_5 symmetry, not just the preserved Z_5

The Quadruplet of ${\cal A}_5$

• Irreducible representations of A_5 : 1 3 3'

$$\Phi = (\phi_1, \phi_2, \phi_3, \phi_4)$$

Even permutations of: $(x_1, x_2, x_3, x_4, x_5)$

- This case will have a non-Abelian preserved symmetry
- The primary invariants of the quadruplet of A_5 :

$$\mathcal{I}_{2}^{(4,A_{5})} = \mathcal{I}_{2} + \phi_{4}^{2}
\mathcal{I}_{3}^{(4,A_{5})} = \mathcal{I}_{3} - \frac{\phi_{4}}{2\sqrt{5}}\mathcal{I}_{2} + \frac{\phi_{4}^{3}}{2\sqrt{5}}
\mathcal{I}_{4}^{(4,A_{5})} = \mathcal{I}_{4} + \frac{12}{\sqrt{5}}\mathcal{I}_{3}\phi_{4} + \frac{12}{5}\mathcal{I}_{2}\phi_{4}^{2} + \frac{\phi_{4}^{4}}{5}
\mathcal{I}_{5}^{(4,A_{5})} = \mathcal{I}_{4}\phi_{4} - \frac{1}{2}\mathcal{I}_{2}\phi_{4} - \frac{4}{\sqrt{5}}\mathcal{I}_{3}\phi_{4}^{2} - \frac{\phi_{4}^{3}}{5}\mathcal{I}_{2} + \frac{\mathcal{I}_{4}^{5}}{50}$$

where $(\mathcal{I}_2, \mathcal{I}_3, \mathcal{I}_4)$ are the primary invariants of A_4

Phenomenology of $A_5 \rightarrow A_4$

$$A_5 \to A_4$$

- Three degenerate dGBs, guaranteed by the preserved A_4 symmetry:
- Assume the \mathcal{I}_3 operator is the leading term:

$$m_{\pi_1} = m_{\pi_2} = m_{\pi_3}$$

$$\mathcal{L}_{
m int} \propto rac{1}{M^m} \mathcal{O}^{
m SM} \mathcal{I}_3$$

If the SM production process is uncharged under the discrete group:

$$\mathcal{I}_{3}^{(4,A_{5})} = \frac{\sqrt{5}f}{4} \left[-\frac{2f^{2}}{5} + \left(\pi_{1}^{2} + \pi_{2}^{2} + \pi_{3}^{2}\right) - \frac{4}{\sqrt{5}f}\pi_{1}\pi_{2}\pi_{3} - \frac{41}{60f^{2}} \left(\pi_{1}^{2} + \pi_{2}^{2} + \pi_{3}^{2}\right)^{2} \right]$$

2-pion production 3-pion production

4-pion production

Phenomenology of $A_5 o A_4$

 Because these interactions all stem from the same operator, there is a consistent pattern of production cross sections

$$\mathcal{L}_{\mathrm{int}} \propto rac{1}{M^m} \mathcal{O}^{\mathrm{SM}} \mathcal{I}_3^{(\mathbf{4}, A_5)}$$

$$\frac{\sigma(SM \to 3\pi)}{\sigma(SM \to 4\pi)} = \frac{6f^2}{(41)^2} \frac{\Pi_3}{\Pi_4} = \left(\frac{24\pi}{41}\right)^2 \frac{f^2}{E_{CM}^2}$$

$$\frac{\sigma(SM \to 2\pi)}{\sigma(SM \to 3\pi)} = \frac{15f^2}{4} \frac{\Pi_2}{\Pi_3} = 120\pi^2 \frac{f^2}{E_{CM}^2}$$

* This cross section information tells us about the A_5 symmetry, not just the preserved A_4