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Introduction

Weinberg 3HDM potential (1976) in notation of Ivanov and Nishi:
V = V2 + V4, with V4 = V0 + Vph, (0.1)
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Weinberg:
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Sensitive to phases:

Natural flavour conservation and CPV can be arranged by complex potential

Branco (1980) showed that this could also be achieved with a real potential.
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Important element: Z2 ⇥ Z2-symmetry
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V2 + V0 is invariant under
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This symmetry is broken by the vacuum, three Goldstone bosons!

Actually, one U(1) factor is combined with the hypercharge,

we are left with two Goldstone bosons

With Vph 6= 0, or {�1,�2,�3} 6= 0,

two light states with a significant CP-odd content?
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expect two light states with a significant CP-odd content
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Next: masses

Notation:
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Masses1.2 Neutral sector
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1

v2w2
[�11w

4 + �22v
4

2 + �33v
4

3 � �̄12v
2

2w
2 � �̄13v

2

3w
2 + �̄23v

2

2v
2

3],

(M2

neut)23 =
2�1v2v3

vv1w2s2✓2s2✓3
[�w2s2✓2�2✓3(v

2

2s2✓2c2✓3 + v23s2✓3c2✓2) + v21(v
2

2 � v23)c2✓2�2✓3s2✓2s2✓3 ]

+
v1v2v3
vw2

[�2�22v
2

2 + 2�33v
2

3 + (�̄12 � �̄13)w
2 + �̄23(v

2

2 � v23)],

(M2

neut)25 =
2�1vv2v3

v1
s2✓2�2✓3 ,

(M2

neut)33 =
�4�1v22v

2

3

w2
c2✓2�2✓3 +

2v2
2
v2
3

w2
[�22 + �33 � �̄23],

(M2

neut)34 =
�2�1vv2v3

v1
s2✓2�2✓3 ,

(M2

neut)44 =
�2�1v2v22v

2

3

v2
1
w2s2✓2s2✓3

s2
2✓2�2✓3 ,

(M2

neut)45 =
�2�1vv2v3
v1w2s2✓2s2✓3

s2✓2�2✓3 [v
2

2s2✓2c2✓3 + v23s2✓3c2✓2 ],

(M2

neut)55 =
�2�1

w2s2✓2s2✓3
[2v22v

2

3c2✓2�2✓3s2✓2s2✓3 + v42s
2

2✓2 + v43s
2

2✓3 ],

with (M2

neut
)14 = (M2

neut
)15 = (M2

neut
)24 = (M2

neut
)35 = 0. Most of these are singular

if ✓2 or ✓3 vanishes faster than the other one.

5

It is also instructive to study the determinant:

D5⇥5 =
�2

1
sin2(2✓2 � 2✓3)

v2v4
1
(v2

2
+ v2

3
)5 sin5 2✓2 sin

5 2✓3
F (✓2, ✓3, . . .), (2.11)

with

F (✓2, ✓3, . . .) = 64�3

1
v6
2
v10
3
w2 sin2 2✓2 sin

8 2✓3F̃2,8

+ �2

1
v4
2
v8
3
sin3 2✓2 sin

7 2✓3 F̃3,7

+ �1v
2

2
v6
3
sin4 2✓2 sin

6 2✓3 F̃4,6

+ v4
2
v4
3
sin5 2✓2 sin

5 2✓3 F̃5,5

+ {(✓2, v2,�22, �̄12) $ (✓3, v3,�33, �̄13))} (2.12)

with F̃mn regular, homogeneous expansions in the �’s and powers of the vevs, as well as
sines and cosines of the thetas, accompanying the overall factors sinm 2✓2 sin

n 2✓3. Overall,
if both ✓’s are small, F (✓2, ✓3, . . .) is of order ten in the ✓’s, cancelling the singularity of
the prefactor of Eq. (2.11), but leaving an overall dependence on the thetas given by
sin2(2✓2 � 2✓3).
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Masses1.2 Neutral sector

Neutral sector (5⇥ 5):

(M2

neut)11 =
4�1v22v

2

3

v2s2✓2s2✓3
[1� c2✓2�2✓2c2✓2c2✓3 ]

+
2

v2
[�11v

4

1 + �22v
4

2 + �33v
4

3 + �̄12v
2

1v
2

2 + �̄13v
2

1v
2

3 + �̄23v
2

2v
2

3],

(M2

neut)12 =
�2�1v22v

2

3

v2wv1s2✓2s2✓3
[s2

2✓2�2✓3(2w
2 � v2)� 2c2✓2�2✓3s2✓2s2✓3v

2

1]

� v1
v2w

[2�11v
2

1w
2 � 2�22v

4

2 � 2�33v
4

3 � (�̄12v
2

2 + �̄13v
2

3)(v
2 � 2w2)� 2�̄23v

2

2v
2

3],

(M2

neut)13 =
2�1v2v3

vws2✓2s2✓3
[v22s

2

2✓2 � v23s
2

2✓3 ]

+
v2v3w

vw2
[�2�22v

2

2 + 2�33v
2

3 � �̄12v
2

1 + �̄13v
2

1 + �̄23(v
2

2 � v23)],

(M2

neut)22 =
4�1v22v

2

3

v2w2s2✓2s2✓3
[v21c2✓2�2✓3s2✓2s2✓3 � w2s2

2✓2�2✓3 ]

+
2v2

1

v2w2
[�11w

4 + �22v
4

2 + �33v
4

3 � �̄12v
2

2w
2 � �̄13v

2

3w
2 + �̄23v

2

2v
2

3],

(M2

neut)23 =
2�1v2v3

vv1w2s2✓2s2✓3
[�w2s2✓2�2✓3(v

2

2s2✓2c2✓3 + v23s2✓3c2✓2) + v21(v
2

2 � v23)c2✓2�2✓3s2✓2s2✓3 ]

+
v1v2v3
vw2

[�2�22v
2

2 + 2�33v
2

3 + (�̄12 � �̄13)w
2 + �̄23(v

2

2 � v23)],

(M2

neut)25 =
2�1vv2v3

v1
s2✓2�2✓3 ,

(M2

neut)33 =
�4�1v22v

2

3

w2
c2✓2�2✓3 +

2v2
2
v2
3

w2
[�22 + �33 � �̄23],

(M2

neut)34 =
�2�1vv2v3

v1
s2✓2�2✓3 ,

(M2

neut)44 =
�2�1v2v22v

2

3

v2
1
w2s2✓2s2✓3

s2
2✓2�2✓3 ,

(M2

neut)45 =
�2�1vv2v3
v1w2s2✓2s2✓3

s2✓2�2✓3 [v
2

2s2✓2c2✓3 + v23s2✓3c2✓2 ],

(M2

neut)55 =
�2�1

w2s2✓2s2✓3
[2v22v

2

3c2✓2�2✓3s2✓2s2✓3 + v42s
2

2✓2 + v43s
2

2✓3 ],

with (M2

neut
)14 = (M2

neut
)15 = (M2

neut
)24 = (M2

neut
)35 = 0. Most of these are singular

if ✓2 or ✓3 vanishes faster than the other one.

5

Special cases The mass-squared matrix for the neutral sector has the structure

M2

neut
=

0

BBBB@

X X X 0 0
X X X 0 x
X X X x 0
0 0 x x x
0 x 0 x x

1

CCCCA

����������

⌘HB

1

⌘HB

2

⌘HB

3

�HB

2

�HB

3

����������

(1.33)

where x denotes a term vanishing with �1

If we put ✓2 = ✓3 we get the block-diagonal form with one massless state

M2

neut
=

0

BBBB@

X X X 0 0
X X X 0 0
X X X 0 0
0 0 0 0 0
0 0 0 0 x

1

CCCCA

����������

⌘HB

1

⌘HB

2

⌘HB

3

�HB

2

�HB

3

����������

(1.34)

Finally, for the “simple model” we have

M2

neut
=

0

BBBB@

X X 0 0 0
X X X 0 0
0 X X 0 0
0 0 0 x x
0 0 0 x X

1

CCCCA

����������

⌘HB

1

⌘HB

2

�HB

3

�HB

2

⌘HB

3

����������

(1.35)

which is also block diagonal, having interchanged rows (and columns) 3 and 5, i.e.,
swapped ⌘HB

3
and �HB

3
.
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general case
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1.2 Neutral sector

Neutral sector (5⇥ 5):

(M2

neut)11 =
4�1v22v

2

3

v2s2✓2s2✓3
[1� c2✓2�2✓2c2✓2c2✓3 ]

+
2

v2
[�11v

4

1 + �22v
4

2 + �33v
4

3 + �̄12v
2

1v
2

2 + �̄13v
2

1v
2

3 + �̄23v
2

2v
2

3],

(M2

neut)12 =
�2�1v22v

2

3

v2wv1s2✓2s2✓3
[s2

2✓2�2✓3(2w
2 � v2)� 2c2✓2�2✓3s2✓2s2✓3v

2

1]

� v1
v2w

[2�11v
2

1w
2 � 2�22v

4

2 � 2�33v
4

3 � (�̄12v
2

2 + �̄13v
2

3)(v
2 � 2w2)� 2�̄23v

2

2v
2

3],

(M2

neut)13 =
2�1v2v3

vws2✓2s2✓3
[v22s

2

2✓2 � v23s
2

2✓3 ]

+
v2v3w

vw2
[�2�22v

2

2 + 2�33v
2

3 � �̄12v
2

1 + �̄13v
2

1 + �̄23(v
2

2 � v23)],

(M2

neut)22 =
4�1v22v

2

3

v2w2s2✓2s2✓3
[v21c2✓2�2✓3s2✓2s2✓3 � w2s2

2✓2�2✓3 ]

+
2v2

1

v2w2
[�11w

4 + �22v
4

2 + �33v
4

3 � �̄12v
2

2w
2 � �̄13v

2

3w
2 + �̄23v

2

2v
2

3],

(M2

neut)23 =
2�1v2v3

vv1w2s2✓2s2✓3
[�w2s2✓2�2✓3(v

2

2s2✓2c2✓3 + v23s2✓3c2✓2) + v21(v
2

2 � v23)c2✓2�2✓3s2✓2s2✓3 ]

+
v1v2v3
vw2

[�2�22v
2

2 + 2�33v
2

3 + (�̄12 � �̄13)w
2 + �̄23(v

2

2 � v23)],

(M2

neut)25 =
2�1vv2v3

v1
s2✓2�2✓3 ,

(M2

neut)33 =
�4�1v22v

2

3

w2
c2✓2�2✓3 +

2v2
2
v2
3

w2
[�22 + �33 � �̄23],

(M2

neut)34 =
�2�1vv2v3

v1
s2✓2�2✓3 ,

(M2

neut)44 =
�2�1v2v22v

2

3

v2
1
w2s2✓2s2✓3

s2
2✓2�2✓3 ,

(M2

neut)45 =
�2�1vv2v3
v1w2s2✓2s2✓3

s2✓2�2✓3 [v
2

2s2✓2c2✓3 + v23s2✓3c2✓2 ],

(M2

neut)55 =
�2�1

w2s2✓2s2✓3
[2v22v

2

3c2✓2�2✓3s2✓2s2✓3 + v42s
2

2✓2 + v43s
2

2✓3 ],

with (M2

neut
)14 = (M2

neut
)15 = (M2

neut
)24 = (M2

neut
)35 = 0.

We diagonalize the general matrix by a 5 ⇥ 5 rotation matrix O to obtain the mass
eigenstates:

hi = Oij'
HB

j , (1.32)

The determinant of M2

neut
has an overall factor of �2

1
reflecting the fact that in the

absence of the terms in Vph there would be two massless states, originating from the
breaking of the U(1)⇥U(1) symmetry.

Special cases
The mass-squared matrix for the neutral sector has the structure

5

general case

M2

neut
=

0

BBBB@

X X X 0 0
X X X 0 x
X X X x 0
0 0 x x x
0 x 0 x x

1
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����������

⌘HB

1

⌘HB

2

⌘HB

3

�HB

2

�HB

3

����������

(1.33)

where x denotes a term vanishing with �1

If we put ✓2 = ✓3 we get the block-diagonal form with one massless state
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�HB

3

����������

(1.34)

Finally, for the “simple model” we have

M2

neut
=
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BBBB@

X X 0 0 0
X X X 0 0
0 X x 0 0
0 0 0 x x
0 0 0 x X

1

CCCCA

����������

⌘HB

1

⌘HB

2

�HB

3

�HB

2

⌘HB

3

����������

(1.35)

which is also block diagonal, having interchanged rows (and columns) 3 and 5, i.e.,
swapped ⌘HB

3
and �HB

3
.

simple case
simple case: �2 = ±�3, ✓2 = ⌥✓3, v2 = v3, �ii = �jj, �̄ij = �̄12
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Masses1.2 Neutral sector

Neutral sector (5⇥ 5):
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where x denotes a term vanishing with �1

If we put ✓2 = ✓3 we get the block-diagonal form with one massless state
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which is also block diagonal, having interchanged rows (and columns) 3 and 5, i.e.,
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We diagonalize the general matrix by a 5 ⇥ 5 rotation matrix O to obtain the mass
eigenstates:

hi = Oij'
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j , (1.32)

The determinant of M2
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has an overall factor of �2
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reflecting the fact that in the

absence of the terms in Vph there would be two massless states, originating from the
breaking of the U(1)⇥U(1) symmetry.

Special cases
The mass-squared matrix for the neutral sector has the structure

5

general case

M2

neut
=

0

BBBB@

X X X 0 0
X X X 0 x
X X X x 0
0 0 x x x
0 x 0 x x

1

CCCCA

����������

⌘HB

1

⌘HB

2

⌘HB

3

�HB

2

�HB

3

����������

(1.33)

where x denotes a term vanishing with �1

If we put ✓2 = ✓3 we get the block-diagonal form with one massless state
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which is also block diagonal, having interchanged rows (and columns) 3 and 5, i.e.,
swapped ⌘HB
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Gauge couplings

2 Gauge couplings

The gauge-scalar couplings are determined by the kinetic part of the Lagrangian,
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with the rotation matrix O relating physical states to the fields of the Higgs basis, as
defined by Eq. (1.32). For the SM-like state at 125.25 GeV, this coupling Oi1 is severely
constrained by the LHC measurements [?]. Its magnitude must be close to unity.
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Since Z is odd under CP, we can construct a basis-independent measure of how dif-
ferent the CP content of two states is, by examining the trilinear coupling hihjZ. From
the first line of equation (2.3), an obvious measure is

Pij = (Oi2Oj4 +Oi3Oj5)� (i $ j). (2.5)

Whereas in the 2HDM, allowing for CP violation, the hihjZ couplings are essentially the
same as the hkZZ couplings [?], with i, j, k all di↵erent, this is not the case in a 3HDM.
It is a linearly independent quantity, and will be explored in the following.

Let us consider hi = hSM and sum over j

5X

j=1

Pij = Oi2 +Oi3 �Oi4 �Oi5. (2.6)
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The hjWW (and hjZZ) coupling is given by Oj1

Z is odd under CP, study the trilinear coupling hihjZ

Pij = (Oi2Oj4 +Oi3Oj5)� (i $ j). (2.5)

In the 2HDM, allowing for CP violation, the hihjZ couplings are essentially
the same as the hkZZ couplings, with i, j, k all di↵erent
Not the case in a 3HDM.

It is a linearly independent quantity, and will be explored in the following.
Normalized to the squared sum of even and odd couplings,

P̂ij =
Pijq

min(O2

i1, O
2

j1) + P 2

ij

, (2.6)

with Oi1 representing the CP-even ZZhi coupling.
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Scan

Scan over model parameters:
5 Parameter scans

Want the Higgs-gauge coupling hSMWW to be close to unity

|Oj1| ' 1, for some j. (5.1)

vi 2 [0, v], i = 1, 2, 3, witht v2
1
+ v2

2
+ v2

3
= v2, (5.2)

✓i 2 [�⇡, ⇡], i = 2, 3, (5.3)

�ii,�ij,�
0
ij,�1 2 [�4⇡, 4⇡], i, j = 1, 2, 3. (5.4)
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1
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2
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�ii,�ij,�
0
ij,�1 2 [�4⇡, 4⇡], i, j = 1, 2, 3. (4.4)

From these parameters one can reconstruct the mass-squared matrices and diagonalize
them. The neutral mass eigenvalues are ordered as

m1 < m2 < m3 < m4 < m5. (4.5)

For each j = 1 to 5:

1. check if the coupling Oj1 to WW (or ZZ) is compatible with LHC measurements,
3� (� = 0.12) tolerance,

2. rescale all �s such that mj = mSM = 125.25 GeV [footnote]

3. check if all rescaled �s (including �2 and �3) are within the perturbative range,

4. check if the lightest charged scalar is above 80 GeV.

[footnote] masses squared are linear in �s

Table 1: Distribution [in %] of SM-like hj

h1 h2 h3 h4 h5

0.32 38.05 28.22 22.83 10.58
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Z affinity

2 Gauge couplings

The gauge-scalar couplings are determined by the kinetic part of the Lagrangian,

Lkin =
X

i=1,2,3

(Dµ�i)
†(Dµ�i). (2.1)

Cubic gauge-gauge-scalar part:

LV V h =

✓
gmWW+

µ W µ� +
gmZ

2 cos ✓W
ZµZ

µ

◆ 5X

i=1

Oi1hi, (2.2)

with the rotation matrix O relating physical states to the fields of the Higgs basis, as
defined by Eq. (1.32). For the SM-like state at 125.25 GeV, this coupling Oi1 is severely
constrained by the LHC measurements [?]. Its magnitude must be close to unity.

Cubic gauge-scalar-scalar terms:

LV hh = � g
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$
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�
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and for the quartic gauge-gauge-scalar-scalar terms, we find

LV V hh =
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(2.4)

The hjWW (and hjZZ) coupling is given by Oj1

Z is odd under CP, study the trilinear coupling hihjZ

Pij = (Oi2Oj4 +Oi3Oj5)� (i $ j). (2.5)

Whereas in the 2HDM, allowing for CP violation, the hihjZ couplings are essentially
the same as the hkZZ couplings [?], with i, j, k all di↵erent, this is not the case in a
3HDM. It is a linearly independent quantity, and will be explored in the following.

Let us consider hi = hSM and sum over j

5X

j=1

Pij = Oi2 +Oi3 �Oi4 �Oi5. (2.6)
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The quantity
measures how “di↵erent” two states hi and hj are in terms of CP.
Recall the CP-conserving 2HDM: full-strength HAZ coupling, no hHZ coupling

5 Accommodating an SM-like state hSM

Assuming h2 or h3 is identified as hSM, we shall here first discuss the CP profiles of the
light states, as determined from the gauge couplings, and then subsequently study the
Yukawa couplings.

5.1 h2 as hSM

Complex vevs v2ei✓2/v and v3ei✓3/v, for h2 = hSM.
Yellow is high, dark blue is low. Arbitrary normalization.
Relative strength of the h2hjZ couplings, in units of g/(2 cos ✓W )
(root-mean-square, averaged over the scan).

5.2 h3 as hSM

Complex vevs v2ei✓2/v and v3ei✓3/v, for h3 = hSM.
Yellow is high, dark blue is low. Arbitrary normalization.

Relative strength of the h3hjZ couplings, in units of g/(2 cos ✓W ).

5.3 Yukawa couplings

Returning now to the Yukawa couplings, we study the angle ↵, which is a measure of the
relative CP-odd component of this coupling. A suitable measure is its root-mean square,
in units of its maximum, ⇡/2. This is shown in Fig. ?? for the five di↵erent neutral states.

6 Mass-squared matrices

6.1 Rotating to a Higgs basis

A suitable Higgs basis is reached by the transformation

R2R1

0

@
v1

ei✓2v2
ei✓3v3

1

A =

0

@
v
0
0

1

A . (6.1)

with

R1 =

✓
1 0
0 R1

◆
, R1 =

1

w

✓
v2e�i✓2 v3e�i✓3

�v3e�i✓2 v2e�i✓3

◆
, w =

q
v2
2
+ v2

3
, (6.2)

and

R2 =
1

v

0

@
v1 w 0
�w v1 0
0 0 v

1

A . (6.3)
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The quantity
measures how “di↵erent” two states hi and hj are in terms of CP.
Recall the CP-conserving 2HDM: full-strength HAZ coupling, no hHZ coupling
Because of alignment, no hAZ coupling either

As a reference, we analysed parameter points that were not subject to the experimental
SM-like Higgs constraints
For this study, we define a “near U(1)⇥ U(1) symmetry” condition

max(|�1|, |�2|, |�3|) = 0.01 (4.6)

whereas in the right panel we impose no such constraint, i.e., we do not restrict the
scan to the regime of near U(1)⇥U(1) symmetry. The left panel shows a clear separation
into two sets of states, h1 and h2 have low a�nity to the Z, meaning they have similar
CP content, as does the other set, h3, h4 and h5. It is natural to interpret this as follows:
Near the U(1) ⇥ U(1) limit we have two neutral states that are approximately odd under
CP, and three that are approximately even. This is fully in accord with the expectations
from the Goldstone theorem [?,?], since the Goldstone bosons in the U(1) ⇥ U(1) limit
will be CP odd [?].

Average Z a�nity of states hi and hj. Left: the U(1)⇥U(1) limit; Right: no restriction
on the lambdas.

It is instructive to consider how the Z a�nity is a↵ected by alignment. Let hj be
“aligned”, meaning its coupling to WW is maximal, Oj1 = 1. by orthogonality, it follows
that Ok1 = 0 for k 6= j and Ojk = 0, for k 6= 1. Then

Pij = Pji = 0 for all i, (4.7)

the aligned scalar hj has no Z a�nity with any other hi [?]. This is analogous to the
CP-even and aligned (and SM-like) h in a CP-conserving 2HDM not having any Z a�nity
to the pseudoscalar A, even though they have opposite CP.

The features displayed in Fig. ?? change when we turn on the SM-like constraint. We
shall next consider h2 and h3 as candidates for being the discovered state at 125.25 GeV.

5 Accommodating an SM-like state hSM

Assuming h2 or h3 is identified as hSM, we shall here first discuss the CP profiles of the
light states, as determined from the gauge couplings, and then subsequently study the
Yukawa couplings.

5.1 h2 as hSM

Complex vevs v2ei✓2/v and v3ei✓3/v, for h2 = hSM.
Yellow is high, dark blue is low. Arbitrary normalization.
Relative strength of the h2hjZ couplings, in units of g/(2 cos ✓W )
(root-mean-square, averaged over the scan).
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2 Gauge couplings

The gauge-scalar couplings are determined by the kinetic part of the Lagrangian,

Lkin =
X

i=1,2,3

(Dµ�i)
†(Dµ�i). (2.1)

Cubic gauge-gauge-scalar part:

LV V h =

✓
gmWW+

µ W µ� +
gmZ

2 cos ✓W
ZµZ

µ

◆ 5X

i=1

Oi1hi, (2.2)

Cubic gauge-scalar-scalar terms:

LV hh = � g

2 cos ✓W

5X

i=1

5X

j=1

(Oi2Oj4 +Oi3Oj5)(hi

$
@µhj)Z

µ

+
g

2

5X

i=1

2X

j=1

[(iOi j+1 +Oi j+3)
2X

k=1

Ujk(h
+

k

$
@µhi)W

µ� + h.c.]

+

✓
ieAµ +

ig cos 2✓W
2 cos ✓W

Zµ

◆ 2X

j=1

(h+

j

$
@µh

�
j ), (2.3)

and for the quartic gauge-gauge-scalar-scalar terms, we find

LV V hh =

✓
g2

4
W+

µ W µ� +
g2

8 cos2 ✓W
ZµZ

µ

◆ 5X

i=1

h2

i

+

✓
g2

2
W+

µ W µ� + e2AµA
µ +

g2 cos2 2✓W
cos2 ✓W

ZµZ
µ +

eg cos 2✓W
cos ✓W

AµZ
µ

◆ 2X

j=1

h+

j h
�
j

+

✓
eg

2
W+

µ Aµ � g2 sin2 ✓W
2 cos ✓W

W+

µ Zµ

◆ 5X

i=1

2X

j,k=1

Ujkhih
�
k (Oij+1 + iOij+3) + h.c.

�
.

(2.4)

The hjWW (and hjZZ) coupling is given by Oj1

Z is odd under CP, study the trilinear coupling hihjZ

Pij = (Oi2Oj4 +Oi3Oj5)� (i $ j). (2.5)

In the 2HDM, allowing for CP violation, the hihjZ couplings are essentially
the same as the hkZZ couplings, with i, j, k all di↵erent
Not the case in a 3HDM.

It is a linearly independent quantity, and will be explored in the following.
Normalized to the squared sum of even and odd couplings,

P̂ij =
Pijq

min(O2

i1, O
2

j1) + P 2

ij

, (2.6)

with Oi1 representing the CP-even ZZhi coupling.
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h2 as hSM

6 Accommodating an SM-like state hSM

Assuming h2 or h3 is identified as hSM, we shall here first discuss the CP profiles of the
light states, as determined from the gauge couplings, and then subsequently study the
Yukawa couplings.

6.1 h2 as hSM

Complex vevs v2ei✓2/v and v3ei✓3/v, for h2 = hSM.
Yellow is high, dark blue is low. Arbitrary normalization.

Left: Distributions of squared gauge couplings C2

1
of h1 vs mass (arbitrary units, with

yellow “high” and dark blue “low”). Right: Relative strength of the h2hjZ couplings, in
units of g/(2 cos ✓W ) (root-mean-square, averaged over the scan).

10



h2 as hSM

6 Accommodating an SM-like state hSM

Assuming h2 or h3 is identified as hSM, we shall here first discuss the CP profiles of the
light states, as determined from the gauge couplings, and then subsequently study the
Yukawa couplings.
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6 Accommodating an SM-like state hSM

Assuming h2 or h3 is identified as hSM, we shall here first discuss the CP profiles of the
light states, as determined from the gauge couplings, and then subsequently study the
Yukawa couplings.

6.1 h2 as hSM

Complex vevs v2ei✓2/v and v3ei✓3/v, for h2 = hSM.
Yellow is high, dark blue is low. Arbitrary normalization.
Relative strength of the h2hjZ couplings, in units of g/(2 cos ✓W )
(root-mean-square, averaged over the scan).

For the parameter points that survive the constraints, we show in figure ?? the distri-
butions of the complex vevs v2ei✓2 and v3ei✓3 . Superimposed on circular structures with
“holes” at v2 = 0 and v3 = 0 there are depressions at purely real and purely imaginary
values. The latter are due to the fact that �2 and/or �3 become non-perturbative when
| sin 2✓2| or | sin 2✓3| are small.

6.2 h3 as hSM

Complex vevs v2ei✓2/v and v3ei✓3/v, for h3 = hSM.
Yellow is high, dark blue is low. Arbitrary normalization.

For the parameter points that survive the above constraints on maximal allowed value
of the |�|s and minimum allowed charged Higgs mass, we show in figure ?? the distribu-
tions of the complex vevs v2ei✓2 and v3ei✓3 . As compared with the previous case, h2 = hSM,
the small-v2 and small-v3 regions are here less depleted.
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Yukawa couplings3 Yukawa couplings

Example Z2 ⇥ Z2 charges:

�1 : (+1,+1) �2 : (�1,+1) �3 : (+1,�1) (3.1)

uR : (+1,+1) dR : (�1,+1) eR : (+1,�1) (3.2)
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�1 : (+1,+1) �2 : (�1,+1) �3 : (+1,�1) (3.1)

uR : (+1,+1) dR : (�1,+1) eR : (+1,�1) (3.2)

Then the Yukawa Lagrangian takes the form

LY = Y uQ̄L�̃1uR + Y dQ̄L�2dR + Y eĒL�3eR + h.c. (3.3)

Expanding the doublets and rewriting the Yukawa neutral interactions in terms of the
physical fermion fields, we obtain

Lneutral

Y =
1

v1
ūMu(⌘1 + i�1�5)u+

1

v2
d̄Md(⌘2 + i�2�5)d+

1

v3
ēM e(⌘3 + i�3�5)e. (3.4)

Mixing between the ⌘i and �i fields will cause the neutral physical scalars to have CP
violating interactions, the Yukawa interaction between a neutral physical scalar hi and a
fermion f takes the general form

Lhiff =
mf

v
hi(

hiff f̄f + i̃hiff f̄�5f). (3.5)

This structure can be used to quantify the CP content of the physical scalars. For the
case of ⌧ ⌧̄ final states, CMS [?] has measured this mixing, defined through

tan↵hSM⌧⌧ =
̃hSM⌧⌧

hSM⌧⌧
. (3.6)
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Expanding the doublets and rewriting the Yukawa neutral interactions in terms of the
physical fermion fields, we obtain

Lneutral

Y =
1

v1
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h2 as hSM

having imposed

cut on α for hSM

h3 as hSM



EXPERIMENTAL ISSUE

If h2 or h3 plays the role of hSM at 125 GeV

Why have not h1 or h2 been observed?

1. Reduced coupling for Bjorken process (LEP)

2. Reduced gamma-gamma BR

However, note suggestions by Heinemeyer et al, 96 GeV
2105.11189, 2203.13180, 2204.05975



CONCLUSIONS

We have reviewed the Weinberg 3HDM potential 

• accommodates CP violation and NFC

• consequence: light states with a signifi


• Plea for LHC: keep searching!



BACKUP



h3 as hSMAppendix: Limits of CPC
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has to check higher invariants.
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Higgs basis

In order to explore the Conjecture, we need to determine the mass matrices, and the
couplings of physical scalar states to gauge bosons and to fermions. It is convenient to
first transform the fields to a Higgs basis.

0.1 Rotating to a Higgs basis

A suitable Higgs basis is reached by the transformation
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