Performance measurements of CdZnTe detectors for the MeVCube project.

Markus Ackermann, Giulio Lucchetta, DTS-ST3 meeting, 16.03.2022

The MeVCube project **Development of an ultracompact Compton camera for CubeSats**

COMPTEL (1991 - 2000)

Weight: 1460 kg **Dimensions:** 2.6 m x 1.8 m **Power:** 200 W Energy range: 0.8 - 30 MeV **Energy resolution:** 5 - 8% (FWHM) Angular resolution: 1.7 - 4.4 deg Effective area: 5 - 30 cm² Field-of-view: 1 sr

DESY.

Phase 1: R&D project to test feasibility ulletof approach (funded by DSF)

MeVCube

- Based on CdZnTe semiconductor detectors
- Each layer consists of a matrix of detector crystals
- Crystal size: 2 x 2 x 1.5 cm³
- 64 pixels / detector
- Total power: < 5 W

6U CubeSat: ~ 30 cm x 20 cm x 10 cm

Motivation The sensitivity gap at MeV energies

DESY.

- Multi-wavelength and ulletmulti-messenger observations of astrophysical phenomena need broad coverage of the electromagnetic spectrum
- Spectral lines from radioisotope decays are unique to the high-keV / low-MeV energy range

MeVCube design / performance requirements

Phase 1: Verify the design requirements in the laboratory

- Cadmium-Zinc-Telluride (CdZnTe or CZT) semiconductor detectors, arranged on two layers
- High atomic number, density and stopping power
- Good spectral and imaging performance

Parameter	Design value
CubeSat model	4 U scientific payload,
	6 U complete satellite
Orbit	Low Earth Orbit (LEO),
	$\sim 550 \text{ km}$ altitude, $\leq 5^{\circ}$ incl
Number of CdZnTe detectors	128 (8x8 pixels each)
CdZnTe detector size	$2.0 \text{ cm} \times 2.0 \text{ cm} \times 1.5 \text{ cm}$
Pixel pitch	$2.45 \mathrm{~mm}$
Pixel size	$2.25 \text{ mm} \times 2.25 \text{ mm}$
Depth resolution (FWHM)	$\sim 1.8 \text{ mm}$
Energy resolution (FWHM)	$\sim 6.5\%$ at 200 keV,
	$\sim 2.8\%$ at 662 keV,
	$\lesssim 2.0\%$ at $> 1~{ m MeV}$
Read-out electronics	VATA450.3 (250 µW / channe
Total power consumption	< 5 W

Test setup

DESY.

- 64-channel pixel readout with VATA450.3 \bullet ASIC (IDEAS)
- Cathode readout with discrete pre-amplifier/ \bullet shaper + sampling with DRS4
- Response measurements with Ba-133, \bullet Cs-137 and Co-60 radioisotopes
- Copper collimator for depth-of-interaction measurements

Energy resolution measurements

Depth-of-interaction correction

- Measurement of photo-peak of Cs-137 (662 keV)
- Cathode signal proportional to depth-of-interaction
- Non-linear response of pixel signal for interactions in the anode region
- Cathode signal can be used to correct non-linearities and improve energy resolution.

Energy resolution measurements

Depth-of-interaction correction

- Measurement of photo-peak of Cs-137 (662 keV)
- Cathode signal proportional to depth-of-interaction
- Non-linear response of pixel signal for interactions in the anode region
- Cathode signal can be used to correct non-linearities and improve energy resolution.
- Removal of near-anode events (10%-20%) further improves the line resolution.

Energy resolution summary

- Energy resolution <3% FWHM at 662 keV for a large majority of pixels (median resolution: 2.8%)
- Energy dependence: 6.5% @ 200 keV, < 2% @ 1 MeV

Spatial resolution

- drill hole
- Geant4 Simulation of "illumination" spot

Effects of an anode steering grid

- Pixel H1 is connected to a steering grid that can be biased to facilitate better charge collection in pixels \bullet
- Several studies in literature have seen improved efficiency with biased steering grids \bullet
- Measurements for several pixels show 0% 15% improvements
- Efficiency gain is deemed too small to justify the added complexity for the camera design \bullet

Summary

- We have evaluated the performance of CdZnTe detectors in a \bullet laboratory test setup.
- Energy resolution and depth-of-interaction resolution have been \bullet measured and are meeting / exceeding the requirements.
- Sensitivities for various CubeSat configurations have been \bullet calculated using simulations with input from the measurements.
- The improvements in efficiency from a steering grid are not high ulletenough to justify the added complexity.
- Two papers are (almost) ready for submission.
- Next phase of project has started.

 $1U = 10 \times 10 \times 10 \text{ cm}$ (CubeSat size)

Next step

Phase 2: Development of a full flight-ready camera module

- Successful proposal with IHEP Beijing to DFG and NSFC \bullet
- HU/DESY develops the CdZnTe photon absorption layer \bullet
- IHEP develops a 10-layer silicon strip detector as interaction \bullet layer

DESY.

Double-sided 500µm silicon strip detectors 7cm x 7cm, 128 strips, VATA 460.3 readout (Developed at IHEP Beijing)

MeVCube CdZnTe layer

