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[Simon Platzer]

do ~ donara(Q) x PS(Q — ) x Had(pu — A) X ...



Parton shower status

J<E <o [ [

» Despite pushes for higher orders in parton showers (e.g. [Prestel,

Hoeche—Phys.Rev.D 96 (2017) 7, 074017], [Skands, Li—PLB 771 (2017) 59-66])
Road to accuracy requires paradigm shift
» Recoil, ordering, colour, correlations
[Bewick, Seymour, Richardson—JHEP 04 (2020) 019], [Forshaw, Holguin,
Platzer—-JHEP 09 (2020) 014], [Ruffa, Platzer—JHEP 06 (2021) 007], [ML, Platzer,
Simpson—2112.14454], [also see PanScales]
» Amplitude level sets the complexity for resolving these
[Nagy, Soper], [DeAngelis, Forshaw, Platzer— PRL 126 (2021) 11, 112001 & JHEP 05
(2018) 044]

» Not only relevant theoretically but also in its own right to go
beyond leading-N- resummation for complex observables
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Coherent branching

» Coherent emission of soft large angle gluons from systems of
collinear partons

» Angular ordering essential for including large-angle soft
contributions

% % <1 / <1<l

[Simon Platzer]

» Resummation of global jet observables such as thrust =

» NLL accurate @Next-to-Leading-Colour (NLC) if inclusive over
secondary soft gluon emission
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Non-global observables

»> No global measure of deviation from
jet configuration: Coherent
branching fails

» Dipole shower: correct LL@LC for
non-global, but issues in NLL@LC
and LL@NLC for global observables

Maximilian Léschner | ITP @ KIT

4/24



Non-global observables

»> No global measure of deviation from
jet configuration: Coherent
branching fails

» Dipole shower: correct LL@LC for
non-global, but issues in NLL@LC
and LL@NLC for global observables

» Require dipole-type soft gluon evolution (to account for change in
colour structure)

» Even with a dipole approach, 1/N¢ effects possibly become
comparable to subleading logs, and intrinsically ~ 10% effects
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Bucket list

= Study approximations in emission iterations rather than iterations
of one emission approximation.
Or: amplitude vs. cross-section level

Goal: NLL@NLC accuracy for global and non-global observables

>

vVvyyy

v

Going beyond iterated 1 — 2 higher logarithmic accuracy
splittings in parton showers o

Combine with global recoil scheme Systematic expansion
Address non-global observables to handle uncertainties

Include color and spin correlations

Refine ad hoc models of MC-programs,
e.g. azimuthal correlations

Define language for connecting fixed order to parton showers
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Comparison to CS dipoles

» Catani-Seymour dipole operators reproduce the partitioned soft
and collinear behaviour for one emission:

! (5.2)

Dij (P1; s Pmt1) = _ﬂ
i Py

-~ T, -T ~ =
w< L1y kym 1 sz UV Ly Gy oy 1 >
ij
. / 2 2 s .
< 8|V h(Zisyiia)ls’ > = 8mp*as Cr - — (1+2) —e(l = %)| dor
1-z(1 _yij,k) [Catani, Seymour '97]

» Our idea: algorithmic generation of such splitting kernels for > 1
emission

» Generate partitioned soft behaviour via power counting instead
of construction ‘by hand’

» Potential for constructing subtraction terms
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Splitting kernels



Splitting kernels from amplitudes

From the cross-section level to decomposed amplitudes:

o =3 [T IM() M) - p)
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Splitting kernels from amplitudes

From the cross-section level to decomposed amplitudes:

o =3 [T IM() M) - p)

M| T, | o =G | x P
= 5
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Splitting kernel iterations

Density operator language is useful for discussing emissions in
iterative manner:

/—/R
a : | a
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2 | | ;
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i | ;
b I @
; ; T i : b
i N ~—
D, I8 D, H FI} DJ{ D;

[Forshaw, Holguin, Platzer—JHEP 09 (2020) 014]
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Partitioning



Disentangling different collinear sectors

» Use partition of one in terms
of all possible collinear

pairings
_ ), A | ) @ o
1=P7"+Py7 +Py"7 + ... e S g
: oo Q& ¢ -
where ]P’,EA) projects onto : @ oo [ o o= g

collinearity w.r.t. p; for some / N
amplitude A y .

» Disentangle overlapping
collinear singularities

> Keep smooth interpolation
over whole phase space
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Fractional partitioning for two emissions

Goal: Construct factors which cancel out ‘unwanted’ collinear

singularities in emission amplitudes

» Collect non-singular factors in triple
collinear and coll-coll pairings

» Read
Gl Ilk): Sk = (g + ¢ +aqr)> =0
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Fractional partitioning for two emissions

Goal: Construct factors which cancel out ‘unwanted’ collinear
singularities in emission amplitudes

configuration AX g——pg—e—
. . a ijPklPijk P ikl
» Collect non-singular factors in triple illgllk SkiSiki
collinear and coll-coll pairings iflglle Sk1SijnSin
AR 857 5:555;
» Read ; “ll 7 ||‘| 1 g.jfgk.jkjkl
9 g o - 2 a M A TR
@l g llk): Sijk = (2 +gq+aqx)*—0 Glla) Gl SijkSjni
Gl k), (11D X
™ Gl D, G k) x
= Construct partitioning factors of the form
pA Sk1S;kl

igk) — SkiSjkt + SijSijk + SijiSjkt + (Ski + i) Sijk Skt

> PEZ‘,L} x A extracts the (i || j || ¥)- singular behaviour
(A)
> Pl
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Angular ordering and subtractions

» Radiation of a soft gluon leads to

d dQ2
da'n+1 = dO’n = aS Z CLlWI[

w 27 27
where W; = M ‘Radiation function’
Di - PjDL- Dy
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Angular ordering and subtractions

» Radiation of a soft gluon leads to

dw dQ o
dO'n+1 = dO'n ' | ZCLIWI[

w 27 27
w g o N 0
where W; = M ‘Radiation function’
Di - PjDL- Dy

> Can decompose W;; = W + wl!
1 1 1

Llw, - )
2( ! 1 —cosf; - 1 — cosb;;
» Then azimuthal averaging confines emissions to cone

/27r dis 11 _ Teosg 1T 035 <,
o 2m " 0 otherwise.

» Textbook knowledge: subtraction partitioning implies angular

ordering [Ellis, Stirling, Webber]
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Subtraction partitioning

» As an alternative to fractional partitioning, define subtraction
scheme:

1 1/ 1
P = — —_ A/ A
(ills) {SZ—]— Sﬂ] 5 <5ij 5, ~fum (zna)) ,

1 1/ 1
P = _ — A 4 A
Gl |:Sij Sﬂ} 5 (Sij 5, ot <m>> ,
E; 1 E 1
RAaim = =2 SN = —o .
(@ll5) E; SuSi;’ @) E; S5

by eXpIOiting Sij M EZEJ n;-ny = %Szl

» Py [ - -] non-singular in (5 || 7)-limit while original singular
behaviour is reproduced in (i || j)-limit

» Algorithmic generalisation to multi emissions under control
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Subtraction partitioning behaviour

Current work: subtraction partitioning — angular ordering for 2E?

_A 1 Azimuthally averaged single emission kernel
X 3 1
300
Sij Sjl \
200f |
100f

w | k original

! 6
05 10 15 20 25 30 i1 partitoned
6i

-100
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Subtraction partitioning behaviour

Current work: subtraction partitioning — angular ordering for 2E?

_A 1 Azimuthally averaged single emission kernel
X 3 1
300F 4
SijSjt :{
200 |
100}
1 original
Ax ——7—7: o
L partitioned
SijSjkSj1Ski
-100}

Original azimuthally averaged two emission amplitude
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Power Counting



Power counting

» Discuss soft and collinear scaling of internal lines in general way
» Sudakov-like decomposition of momenta:

S +PL1
(= E Tik = 2 n* +ky i+
qr 2 ik 1pi" 221 ™ + R

» Decompose fermion and gluon lines (factors of /z; absorbed in
vertices for fermions):

1=y, ool Joear = d"(p;),
2
. :SIerJ_,I%’ :S[eri’[ M V’
223 pi-n (21 pi-n)?
¥ kY ¥ + ntkY
[} = l’l, a090Jlogar = —LD e l’l.
zZr Zrpi-n

> Leads to power counting rules with potential connection to SCET
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Soft and collinear scaling

» Algorithmically determine soft or collinear scaling of an emission
amplitude via scaling of internal lines (and propagators)

g mdjethard fines: Scaling of emissions:

h h+c  h+s h+c+s
S C s+C

A A A A (bal.) 1 BB A
D—.—o

0 A A A (unbal.)

N A2 A A (bal) + 1 A2 A

0 N A X (unbal)

» Note differences between mappings, e.g. with and without
balanced &, -components
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One emission amplitudes

[
[]
L]
>
>
>
>

» Determine list of all
relevant numerator My il

]
nQ
O]

A1 A2 N2
structures for
amplitudes via B 1)
power counting ] A ] -
rules
> Combine these in Ml e 5 | TR e,

density operator (~

squared amp) to I
find full splitting O] N i1
kernel

A2 A N1
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One emission example

Full one emission (ij)-splitting kernel (balanced mapping) consists of

{0 =0 + L (=1
(] L L (] LI L
A (s ] [ 5l ] + o] [ i
(] L L LI L []

» Exhibits factorisation to hard amplitude
» Smooth interpolation between soft and collinear limits
» Algorithmically generalizable for more emissions

Maximilian Loéschner | ITP @ KIT
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Balanced vs. unbalanced mapping

» Can test different implementations of momentum mappings, e.g.
the balancing of transverse components

kit =Y k0Y
i€l
» Yields different sets of diagrammatic contributions

» Nevertheless, the same collinear and soft behaviour is
reproduced

balanced unbalanced

» Expectation: balanced mapping leads to inconsistencies in
iterations because one misses intermediate (_L)-contributions
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Check: One emission splitting function

» Reproduce Splitting function P,, as a crosscheck
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Check: One emission splitting function

» Reproduce Splitting function P,, as a crosscheck

T 4—,{; I.‘ u 0

‘. ~ l‘ .'

1+ OO —I—,{; l., u m=vn

\.. B ..d
%“;‘;T?[(d z)al+4% +4(1 - a)]p, + OO
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Soft-Collinear Interplay

» Soft singular part of splitting function cancelled by:

47raSTi-Tk 4(1 — O/Z')Z Prn
(0.8 Sjk a; pin UZ‘ ]Wk]

o Amas Ty Ty Bi

> Smooth interpolation between soft and collinear limits in Uy ;)

Maximilian Loéschner | ITP @ KIT 20/24



Two emissions: splitting amplitudes

C1C2  C1S2  S1C2  S1S2

» Same procedure

applies to two [ 22 B\ 22 A
emissions
» Some amplitudes can O+
not be achieved by A2 A A 1
single emission
iteration L]
[0 [ N A2 A2 A2

» Signals for violation of

exact factorisation
(drop out for two . A3 A2 A A
emissions though)
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Two emissions: combined contributions

» Determine numerator scaling algorithmically:

combinedAmpsB2[{(c, s, c, S}, 1]

o= 4 O om
7T
om
= om

OWADIE}{4 0 T — o

o
— o)

WMI?}¥H F:?;FOW

o
i |—Ej—} o)

» Combine with partitioned propagator scaling to
find all leading contributions for full kernel
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Applications

» Use projectors and helicity sums to represent emission
amplitudes as (complex) weights for numerical evaluation

et (p, ) (p, )+(u<—>V),

L

p Pf’“() 77(p), (gluon), ") =
(a) = = QZ”p, (quark), 10

Tl

BELE
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Applications

» Use projectors and helicity sums to represent emission
amplitudes as (complex) weights for numerical evaluation

P”"( )= do(p), (gluon), &) =€ ) (p, )+(,u<—>1/),
g P > QZL,,, (quark), "= Z
A
§
.
U, U, Uy, o
> T Tt T Vo
y uS\l [ 11)\, Uy, - } axz
V2n-p; Ly 2n-pe” B \/2n-py Pk " €xs

€5 X
3 2npy 770
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Conclusions

Goal: universal algorithm for handling accuracy in multiple
emissions (for applications in parton showers and beyond)

» Density-operator formalism to study iterative behaviour of
emissions

Partitioning algorithms to separate overlapping singularities
Momentum mapping for exposing collinear and soft factorization
Global recoil via Lorentz transformation

Set of power counting rules to single out leading amplitudes
Can handle and compare different momentum mappings
Two-emission kernels/power counting under control

VVvyVYyVvYYyvyy
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Conclusions

Goal: universal algorithm for handling accuracy in multiple
emissions (for applications in parton showers and beyond)

» Density-operator formalism to study iterative behaviour of
emissions

» Partitioning algorithms to separate overlapping singularities
» Momentum mapping for exposing collinear and soft factorization
» Global recoil via Lorentz transformation
>
>
>

inoA yueyy

Set of power counting rules to single out leading amplitudes
Can handle and compare different momentum mappings
Two-emission kernels/power counting under control
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Team

Karlsruhe/Manchester/Vienna network with support from SFB
drives significant parts of the development, also relating to aspects
such as color reconnection | e.g. Gieseke, Kirchgaesser, Plétzer-JHEP 11 (2018)
149]

Forshaw + De Angelis, Holguin, ... Plitzer + Ruffa, ...

wiversitat
MANCHESTER \i‘hlver /W|en

;}\’//,// o
. .' —/MCnet nr

S— \ AT

Need to combine diverse expertise from
different networks to gain momentum.

F

Gieseke + Léschner, Simpson-Dore, ...

[Platzer—Annual CRC Meeting 2019]



Algorithm for subtraction partitioning

» General form of partitioned propagator P for config o

1 m—1
PO[P] s E <P+ (m I 1)AU;7‘1,“A,7‘7”,1[P] - Z AT'i;Tlv-“vTi71anTi+1a-'-yTr,7L71[P] )
i=1

» with Subtraction terms

A7'1§7'2 ,,,,, Tm [P] = F, [P] <Sn [P] 7ZAT¢1;T¢2,-~,T¢M,1 [Sﬁ [P]]> )
non-singular * singular S/m
bits bits

» When partitioning e.g.to o = (i || j || k), subtract off all
(sub-)divergences of other singular configs 7; for propagator
factor P.

» Combinatorial factor m: number of singular configs for P



Two emission example

> Partitioned version of A®M) o 1/8;;5;.Sk1Sk

P(AY) = % (W + 2850 [P(AD)] = Agryy [P(A)] - A(u)(kl)[P(A(”)D ;
+ % (m — Dy [PAD)] 4+ 24 iy [P(AD)] — A(ij)(kl)[p(A(l))]> 5
+ % (m — DGy [PAM)] = Ay [PAD)] + 2A(ij)(kl)[P(A(1))]> 0
where e.g.

E? 1 1 E;E 1
A AN — i Ea B o
Gk [PLAT)] E;(E; + Ex) S2 \ SuSjii Ej(Ei+ Ex) SauSki )’



Check: Two Emissions

> Reproduced from general two-emission kernel which includes
soft-limit too (here: in lightcone-gauge)

8 : A . _
B < Awas Me) CACp <R§?’3anb>>l¢i o) (Bu 3/2) _



Vertex rules

» Can find vertex rules such as:

-
A A




Insights from Power Counting Rules

» Powerful vertex rule for lines belonging to same collinear sector:




Insights from Power Counting Rules

» Powerful vertex rule for lines belonging to same collinear sector:

» Shows (known fact) that interference diagrams do not contribute
in splitting function in a physical gauge
» Reason: denominator goes as 1//\%5’“ ol) for & coll. emissions

> Can only contribute in splitting function (oc 1/A**Sf, ) if

numerator goes as O(1), but the only possible contribution = 0

-




Global and non-global observables

[Dasgupta, Salam (2001)]

» Example: heavy and light jet mass (global) vs. hemisphere jet
mass (non-global)
» Cancellations between large angle-soft and virtual contributions

(from k5) not guaranteed
= NLL enhancement from leftover o% L? terms



Partitioning

Amplitudes carry different singular S-invariants

N(Sla 52)

S1,8) =
A(S1, S2) 5.5,
Decomposition using partitioning factors:

pld) _ 52 (4 _ _ S
1) S1+ 8y’ 2 S1+ 8y’

we can decompose A into

W}A: N(51,8) | N(S1,52)
@ S1(S1+ %) | S2(S1+S2)

_ [p
A=[P) +P



Parton Shower

2
Ad,

/| % |
k
» Soft and collinear regions are of special interest:

Sii = (@i +4)° =24 ¢ = 2674} [1 — cosBy], forgl; =0

» Amplitude goes as x 1/5;;
= becomes singular/enhanced when §;; — 0

» Large logarithms due to phase space integrations of the kind

dgj  doy 2 @
= =  —aglog”— ~1
49 0i; Qo

for some scale @ € {6,p,, ...} and cut-off Qo



Parton shower: collinear limit

» Single emission approach is then usually iterated in a

probabilistic manner
Woip = ( d(I>2) /}<’

t t 2
_2 / at [ wEywe = 2—( dEW(t )) .
t t 2!

[Stefan Gieseke]

» Sum over any number of emissions: result exponentiates

n k
© ok
osa(to) = oa(to) Y i, (/ At W (t ))

k=1 .

» Sudakov Form Factor (~ no emission probability in range ¢ — t()

A(to) = exp [—/dt W(t)] . W) = /Z+ Mp(z,t) .

2 t



Current activities

1. Amplitude evolution, link to resummation in existing showers
[Forshaw, Holguin, Platzer— 2112.13124 & JHEP 09 (2020) 014 & JHEP 08 (2019) 145 ]

2. New mappings and dipole shower improvements in Herwig
[Duncan, Holguin, Platzer— in progr.; Forshaw, Holguin, Platzer—EPJC 81 (2021) 4, 364]

3. Virtual corrections [Ruffa, Platzer—JHEP 06 (2021) 007]
4. Dipole showers analytics [Gieseke, Platzer, Schaber—in progr.]

5. Real corrections [ML, Platzer, Simpson Dore—2112.14454 |
71 this talk

Goal: build a universal algorithm with well-handled accuracy

» Focus on: factorization, systematic expansion of emission
contributions, recoil and its relation to factorizing evolution
kernels

» NLL@NLC accuracy for global and non-global observables



Momentum mapping



Momentum mapping

Adding emissions

/ = {pi}
>
S

» Start with on-shell (OS) momenta p; (to be emitters) and p,. (to
be recoilers) with overall momentum transfer Q = >~ p; + >, pr




Momentum mapping

Adding emissions
. tku}d
/”’. {pi} @“‘. .
/ add emissions ~ : Q9%
Sepaamlc.
an

{p i }

/;

S {ar)

» Start with on-shell (OS) momenta p; (to be emitters) and p,. (to
be recoilers) with overall momentum transfer Q = Y. p; + >, pr

» Add emissions to the process with:

1. Momentum conservation: -, ¢; + >,  ku + >, ¢» = Q
2. On-shellness of all partons
3. Parametrization of soft & collinear behaviour for any # of emissions



Momentum mapping

A

qr = —Pr
ar
A = = .
ki = o [au pi + Bani + 1\ caBa nﬁ] , A=Y aa, Bu=(1-A)Ba
7
A _ -
= — [(1 — A)pi + (yi — ;ﬁ%)m — > A aafi nﬂ

ar 1

» Decomposition w/ light-like momentum n; and n:;-p; = n;;-n; =0
> Need o? = (Q + N)?/Q? for momentum conservation

Q:ZQT'FZ%-I-Z]W:%[Zprﬂ-Z(])H—ymi)]
T i il T i

~—
Q N

» |orentz transformation A, a;, = non-trivial global recoil



Momentum mapping

» Using A and «p, recoil effects are removed from considerations
about factorization, due to Lorentz invariance and known mass
dimension of the amplitudes:

L . .
M1, qn)) = =7 IM(G1, - 4n)) -
g7

» Soft and collinear power counting possible via scaling of «; and
Bit, I.e. (pi, ni, ni; )-components

‘ (vit, Yi, Bit)
(forward) collinear | (1,2, \?)
soft (A A N).

» Facilitates study of an amplitude’s singular behaviour for
implementation in splitting kernels

» This mapping is just one possible instance. Can e.g. use different
balancing of transverse components.



General algorithm

» Collect leading collinear behaviour for some _ (d)
. ; . . - U, = E P Aq
collinear configuration ¢ in splitting kernels y

» Sum over configurations for full soft

behaviour
. Usort = Z U,
» Under control for two emissions p




Two emissions: topologies

» Decompose squared amplitude in terms of set of topologies

Masal? =303 (B + G o )
FE TS (A4 XG4 o) 4

i l#1 o

» Examples:

L A
o 2
a-X ) - Ok N ) - 0“.
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