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Form factors are basic building blocks for many physical
observables:

t t̄ production at hadron and e+e− colliders

µe scattering

Higgs production and decay

. . .

Form factors exhibit an universal infrared behavior which is
interesting to study
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Motivation



q

q1

q2

X(q)→ Q(q1) + Q̄(q2)

q2
1 = q2

2 = m2, q2 = s = ŝ ·m2

vector : jvµ = ψγµψ, Γv
µ = F v

1 (s)γµ −
i

2m
F v

2 (s)σµνqν

axial-vector : jaµ = ψγµγ5ψ, Γa
µ = F a

1 (s)γµγ5 −
1

2m
F a

2 (s)qµγ5

scalar : js = mψψ, Γs = mF s(s)

pseudo-scalar : jp = imψγ5ψ, Γp = imF p(s)γ5
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The process



non-singlet:

singlet:

F (2)
i (NNLO):

fermionic contributions [Hoang, Teubner 1997]

complete [Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi 2004 - 2005]

F (3)
i (NNNLO):

large Nc [Henn, Smirnov, Smirnov, Steinhauser 2016; Lee, Smirnov, Smirnov, Steinhauser 2018; Ablinger,

Blümlein, Marquard, Rana, Schneider 2× 2018; Lee, Smirnov, Smirnov, Steinhauser 2018]

nl [Lee, Smirnov, Smirnov, Steinhauser 2018; Ablinger, Blümlein, Marquard, Rana, Schneider 2× 2018]

nh (partially) [Blümlein, Marquard, Rana, Schneider 2019]

this talk: full (numerical) results for non-singlet contributions at NNNLO
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Status of massive non-singlet QCD corrections



q2 = s = − (1− x)2

x

Large-Nc and nl contributions at NNNLO can be written as iterated integrals over letters

1
x
,

1
1 + x

,
1

1− x
,

1
1− x + x2 ,

x
1− x + x2

nh terms already contain structures beyond iterated integrals (elliptic integrals)
⇒ No ready-to-use tools available for analytic solution
⇒ Instead: Full solution through analytic series expansions and numerical matching
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Why numerical?



Generate diagrams with qgraf [Nogueira 1991]

Map to predefined integral families with q2e/exp [Harlander, Seidensticker, Steinhauser

1998; Seidensticker 1999]

FORM [Vermaseren 2000; Kuipers, Ueda, Vermaseren, Vollinga 2013; Ruijl, Ueda, Vermaseren 2017] for
Lorentz, Dirac, and color algebra [van Ritbergen, Schellekens, Vermaseren 1998]

Reduction to master integrals with Kira [Maierhöfer, Usovitsch, Uwer 2017; Klappert, FL,

Maierhöfer, Usovitsch 2020] and Fermat [Lewis]

Construct good basis where denominators factorize in ε and ŝ with
ImproveMasters.m [Smirnov, Smirnov 2020]

Establish differential equations in ŝ with LiteRed [Lee 2012 + 2013]

non-singlet
diagrams 271
families 34
integrals 302671
masters 422
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Setup



∂

∂ŝ
Mn = Anm(ε, ŝ)Mm

Compute expansion around ŝ = 0 by:
Inserting an ansatz for the master integrals into the differential equation:

Mn(ε, ŝ = 0) =
∞∑

i=−3

jmax∑
j=0

c(n)
ij εi ŝj

Compare coefficients in ε and ŝ to establish linear system of equations for c(n)
ij

Solve system in terms of small number of boundary constants using Kira with FireFly [Klappert, FL 2019; Klappert,

Klein, FL 2020]

Compute boundary values for ŝ = 0 to fix remaining constants

Construct expansion around new point ŝ = ŝ0 by modifying the ansatz and repeating the steps above
Match both expansions numerically at a point where both expansions converge, e.g. ŝ0/2
Repeat
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Algorithm to solve master integrals
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Algorithm to solve master integrals



Different ansätze for different points:

regular point (including static limit at s = 0): Mn(ε, ŝ = ŝ0) =
∞∑

i=−3

jmax∑
j=0

c(n)
ij εi (ŝ − ŝ0)j

s = ±∞ (high-energy limit): Mn(ε, ŝ → ±∞) =
∞∑

i=−3

jmax∑
j=−smin

i+6∑
k=0

c(n)
ijk εi ŝ−j lnk (ŝ)

s = 4m2 (2-particle threshold): Mn(ε, ŝ = 4) =
∞∑

i=−3

jmax∑
j=−smin

i+3∑
k=0

c(n)
ijk εi

[√
4− ŝ

]j
lnk (√4− ŝ

)
s = 16m2 (4-particle threshold): Mn(ε, ŝ = 16) =

∞∑
i=−3

jmax∑
j=−smin

i+3∑
k=0

c(n)
ijk εi

[√
16− ŝ

]j
lnk (√16− ŝ

)
We construct expansions up to jmax = 50 around

ŝ = { −∞,−32,−28,−24,−16,−12,−8,−4, 0, 1, 2, 5/2, 3, 7/2, 4,
9/2, 5, 6, 7, 8, 10, 12, 14, 15, 16, 17, 19, 22, 28, 40}
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Series expansions
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Series expansions
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ijk εi ŝ−j lnk (ŝ)
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)
We construct expansions up to jmax = 50 around
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Series expansions
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)
s = 16m2 (4-particle threshold): Mn(ε, ŝ = 16) =
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Series expansions
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)
We construct expansions up to jmax = 50 around
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Series expansions



s → 0

⇒

For s = 0 the master integrals reduce to 3-loop on-shell propagators:
Well studied in the literature [Laporta, Remiddi 1996; Melnikov, van Ritbergen 1999; Lee, Smirnov 2010]

The reduction introduces high inverse powers in ε which requires some integrals up to weight 9
Using the dimensional-recurrence relations from [Lee, Smirnov 2010] we calculated the missing terms with
SummerTime.m [Lee, Mingulov 2015] and PSLQ [Ferguson, Bailey, Arno 1999]

8/17 June 9, 2022 Fabian Lange: Massive quark form factors at three loops
Institute for Theoretical Particle Physics and

Institute for Astroparticle Physics

Calculation of boundary conditions
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Example
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Example



-12 -10 -8 -6 -4 -2 0 2
0

10

20

30

40

50

60

Expansion around ŝ = 0
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Example



Other approaches based on differential equations and series expansions:

SolveCoupledSystems.m [Blümlein, Schneider 2017]

DESS.m [Lee, Smirnov, Smirnov 2017]

DiffExp.m [Hidding 2020]

SeaSyde.m [Armadillo, Bonciani, Devoto, Rana, Vicini 2022]

. . .

Our approach . . .

. . . is tailored to problems with one real-valued kinematic variable

. . . does not require a special form for differential equations (except to be almost pole free on the diagonal)

. . . provides approximations over the whole kinematic range

. . . was successfully applied to physical quantities with 339 and 422 master integrals [Fael, FL, Schönwald,

Steinhauser 2021 + 2022]
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Similar algorithms in the literature



UV renormalization

MS renormalization of αs

On-shell renormalization of mass ZOS
m , wave function ZOS

2 , and (if needed) currents [Chetyrkin, Steinhauser 1999;

Melnikov, van Ritbergen 2000]

IR subtraction

Structure of infrared poles given by cusp anomalous dimension Γcusp [Grozin, Henn, Korchemski, Marquard 2014]

Define finite form factors F = ZIRF finite with UV-renormalized form factor F and

ZIR = 1− αs

π

1
2ε

Γ
(1)
cusp −

(αs

π

)2
( · · ·
ε2 +

1
4ε

Γ
(2)
cusp

)
−
(αs

π

)3
( · · ·
ε3 +

· · ·
ε2 +

1
6ε

Γ
(3)
cusp

)
Γcusp = Γcusp(x) depends on kinematics

Γcusp universal for all currents
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Renormalization and infrared structure



F v,f,(3)
1 (ŝ = 0) =

{
C3

F

(
−15a4 −

17π2ζ3

24
− 18367ζ3

1728
+

25ζ5

8
− 5l4

2

8
− 19

40
π2l2

2 +
4957π2l2

720
+

3037π4

25920

− 24463π2

7776
+

13135
20736

)
+ CAC2

F

(19a4

2
− π2ζ3

9
+

17725ζ3

3456
− 55ζ5

32
+

19l4
2

48
− 97

720
π2l2

2

+
29π2l2

240
− 347π4

17280
− 4829π2

10368
+

707
288

)
+ C2

ACF

(
−a4 +

7π2ζ3

96
+

4045ζ3

5184
− 5ζ5

64
− l4

2

24

+
67
360

π2l2
2 −

5131π2l2
2880

+
67π4

8640
+

172285π2

186624
− 7876

2187

)}
ŝ + fermionic corrections +O(ŝ2)

l2 = ln(2), a4 = Li4(1/2) and CA = 3, CF = 4/3 for QCD

Expansions for all currents are available up to O(ŝ67)
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Results – analytic expansion around ŝ = 0



F v,f,(3)
1

∣∣∣
s→−∞

= 4.7318C3
F − 20.762C2

FCA + 8.3501CFC2
A +

[
3.4586C3

F − 4.0082C2
FCA − 6.3561CFC2

A

]
ls

+
[

1.4025C3
F + 0.51078C2

FCA − 2.2488CFC2
A

]
l2s +

[
0.062184C3

F + 0.90267C2
FCA − 0.42778CFC2

A

]
l3s

+
[
− 0.075860C3

F + 0.20814C2
FCA − 0.035011CFC2

A

]
l4s +

[
−0.023438C3

F + 0.019097C2
FCA

]
l5s

+
[
−0.0026042C3

F

]
l6s −

{
− 92.918C3

F + 123.65C2
FCA − 47.821CFC2

A +
[
− 10.381C3

F + 2.3223C2
FCA

+ 17.305CFC2
A

]
ls +

[
4.9856C3

F − 19.097C2
FCA + 8.0183CFC2

A

]
l2s +

[
3.0499C3

F−6.8519C2
FCA + 1.9149CFC2

A

]
l3s

+
[

0.67172C3
F − 0.91213C2

FCA + 0.24069CFC2
A

]
l4s +

[
0.13229C3

F − 0.051389C2
FCA + 0.0043403CFC2

A

]
l5s

+
[

0.0041667C3
F − 0.0010417C2

FCA − 0.00052083CFC2
A

]
l6s
}m2

s
+O

(
m4

s2

)
+ fermionic contributions

Dedicated calculation of leading logarithms [Liu, Penin, Zerf 2017] :

F v,f,(3)
1 = − C3

F

384
l6
s −

m2

s

(
C3

F

240
− C2

FCA

960
− CFC2

A

1920

)
l6
s + . . . , with ls = ln

(
m2

−s

)
We reproduce these terms with high precision
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Results – high-energy limit



We use the pole cancellation to estimate the
precision

To estimate the number of significant digits we use

log10

(∣∣∣∣expansion− analytic CT
analytic CT

∣∣∣∣)
−100 −50 0 50 100

ŝ

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5

lo
g

1
0
(r

el
at

iv
e

er
ro

r(
F
v 1
))

C2
ACF

ε−3

ε−2

ε−1

⇒ We estimate at least 8 correct digits for the finite terms

Most regions much more precise
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Results – pole cancellation
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s/m2

30

20

10

0
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20

Ff,
(3

)
1

C3
F

C2
F CA

CFC2
A

20 40 60 80 100
s/m2

20

10
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Re
(F

f,
(3

)
1

)

C3
F

C2
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CFC2
A
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Results – some plots



Close to threshold we can construct cross-sections and decay rates like

σ(e+e− → QQ̄) = σ0β

(∣∣F v
1 + F v

2

∣∣2 +

∣∣(1− β2)F v
1 + F v

2

∣∣2
2(1− β2)

)
︸ ︷︷ ︸

=3/2 ∆v

with the quark velocity β =
√

1− 4m2/s
Real radiation suppressed by β3

⇒ Direct phenomenological relevance
We find (with l2β = ln(2β))

∆v,(3) = C3
F

[
−32.470

β2
+

1
β

(
14.998− 32.470l2β

)]
+ C2

ACF
1
β

[
16.586l2

2β − 22.572l2β + 42.936
]

+ CAC2
F

[ 1
β2

(
−29.764l2β − 7.7703

)
+

1
β

(
−12.516l2β − 11.435

)]
+O(β0) + fermionic contributions

Agrees with dedicated calculation [Kiyo, Maier, Maierhöfer, Marquard 2009]

16/17 June 9, 2022 Fabian Lange: Massive quark form factors at three loops
Institute for Theoretical Particle Physics and

Institute for Astroparticle Physics

Results – threshold expansion around s = 4m2



Conclusions
Calculated non-singlet contributions to massive quark form factors at NNNLO in QCD

Vector current partially published in [Fael, FL, Schönwald, Steinhauser 2022]

Other currents follow soon

Applied a semianalytic method by constructing series expansions and matching numerically
Reproduce known results from the literature, e.g.

large-Nc limit, nl and partial nh contributions
static, high-energy, and threshold expansions

Estimate precision to at least 8 significant digits over the whole real axis

Extracted matching coefficients between QCD and NRQCD ⇒ talk by Manuel Egner

Outlook

Contributions of singlet diagrams

Singlet contributions to NRQCD matching coefficients

The method can be applied to other one-scale problems
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Conclusions and outlook
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Conclusions and outlook



E.g. extension of G66 (given up to and including O(ε3) in [Lee, Smirnov 2010] ):

= · · · + ε
4

(
−4704s6 − 9120s7a − 9120s7b − 547s8a + 9120s6 ln(2) + 28 ln4(2) +

112 ln5(2)

3
− 808

45
ln6(2)

− 347

9
ln8(2) + 672Li4

( 1

2

)
− 5552

3
ln4(2)Li4

( 1

2

)
− 22208Li4

( 1

2

)2 − 4480Li5
( 1

2

)
− 12928Li6

( 1

2

)
+ . . .

)

+ ε
5

(
14400s6 −

377568s7a

7
− 93984s7b

7
− 2735s8a + 7572912s9a − 3804464s9b −

5092568s9c

3
− 136256s9d

+ 681280s9e + 272512s9f +
377568

7
s6 ln(2)− 32465121

20
s8a ln(2)− 10185136s8b ln(2) + 136256s7b ln2(2) + . . .

)
+O(ε6)
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Calculation of Boundary Conditions



The radius of convergence is at most the distance to the closest singularity.

We can extend the radius of convergence by changing to a new expansion variable.

If we want to expand around the point xk with the closest singularities at xk−1 and xk+1, we can use:

yk =
(x − xk )(xk+1 − xk−1)

(x − xk+1)(xk−1 − xk ) + (x − xk−1)(xk+1 − xk )

The variable change maps {xk−1, xk , xk+1} → {−1, 0, 1}.
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Moebius Transformations
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