
Advances in parallelization of cosmic rays simulations in
CORSIKA 8

A. Augusto Alves Jr, P. Sampathkumar, R. Ulrich

Presented at DPG Spring Meeting - Heidelberg
March 15, 2022

1/8

Introduction: Amdahl’s law

Predicts the expected speedup from parallelism:

Validity of the Single Processor Approach to Achieving
Large-Scale Computing Capabilities

Amdahl, Gene M.

AFIPS Conference Proceedings (30): 483–485 (1967)
doi:10.1145/1465482.1465560

It is expressed as

S(n) =
1

(1− p) + p
n

where: S(n) is the speedup in function of the number of cores/threads. n is number of
cores/threads and p is the fraction of code that is parallelizable. 2/8

Calculation model

• Perform simulation in rounds, parallelizing the proceessing of the particles on each generation of
the shower.

• Output is managed using side effects.

• Input data, RNG, geometry, filters etc are services available to modules, and accessible from the
processing threads in read-only mode.

• The simulation manager thread can operates aside a IO manager thread, a monitoring thread etc.
The worker threads are commissioned and released by the simulation manager thread.

In summary, it is necessary an efficient, flexible and self-balancing facility to manage the task
distribution and execution, in a transparent and scallable way.

3/8

Gyges

Gyges is a lightweight C++20 header-only library to manage thread pooling.

• With Gyges , thread creation and destruction costs can be paid just once in the program
lifetime.

• Threads from the pool pick-up tasks as they became available. If there is no task, the
threads go sleeping.

• Tasks can be submitted from multiple threads.
• The submitter gets a std::future for monitoring the task in-place.
• Task assignment and running can be interrupted at any time.
• A gyges::gang can be created with any number of threads.

Status: Released. Already usable and available here:

https://gitlab.iap.kit.edu/AAAlvesJr/Gyges

4/8

https://gitlab.iap.kit.edu/AAAlvesJr/Gyges

gyges::gang interface

1 class gang
2 {
3 gang(unsigned int const thread_count=std::thread::hardware_concurrency(), bool release = true) ;
4 gang(gang const & other) = delete;
5 gang(gang && other) = delete;
6
7 template<typename FunctionType>
8 inline std::future<void> submit_task(FunctionType f) requires Dispatchable<FunctionType>;
9 inline void stop(void);

10 inline std::size_t size(void);
11 };
12
13 template<typename Iterator, typename Predicate>
14 void for_each(Iterator begin, Iterator end, Predicate const& functor, gang& pool);
15
16 template<typename Iterator, typename Predicate>
17 void for_each(Iterator begin, Iterator end, Predicate const& functor);

The concept Dispatchable specifies signature void operator()(std::stop_token token) noexcept .

5/8

gyges::concurrent_queue interface

With this data structure, push and pop operations can be performed concurrently.

1 template<typename T>
2 class concurrent_queue
3 {
4 concurrent_queue();
5
6 concurrent_queue(const concurrent_queue& other)=delete;
7 concurrent_queue& operator=(const concurrent_queue& other)=delete;
8
9 std::shared_ptr<T> try_pop();

10 bool try_pop(T& value);
11
12 std::shared_ptr<T> wait_and_pop(std::stop_token stoken);
13 void wait_and_pop(std::stop_token stoken, T& value);
14
15 void push(T value);
16 bool empty();
17 };

6/8

Performance and scalling

• The cost for creation and destruction of gyges::gang objects with diffent sizes has been
measured using a AMD Ryzen Threadripper 3960X 24-core/48-thread processor running at
2.2 GHz with frequency boost enabled.

• Using same processor scalling behavior has been measured for the task below, performed
2048 times and distributed over different numbers of threads.

1 //number of random numbers to accumulate per task
2 unsigned nsamples = 1000000;
3 //seed
4 size_t seed = 0x1234abcd;
5 //functor
6 auto functor = [seed, nsamples](double& x) {
7
8 std::mt19937_64 generator(seed);
9 std::uniform_real_distribution<double> distribution(0.0, 1.0);

10
11 for(unsigned i=0; i < nsamples; ++i) x += distribution(generator);
12 };

7/8

Performance and scalling

8/8

Conclusions and prospects

• Low-level software infrastructure for parallelizing CORSIKA 8 is ready.

• Gyges is very small and concise package and has the required performance, scalability and
self-balancing features.

• Gyges also provide gyges::concurrent_queue , which can substitute the current particle
stack.

• Integration into CORSIKA 8 requires modules and other routines to be reimplemented in a
thread-safe fashion.

9/8

