Science & Technology Facilities Council Technology 532. Wilhelm and Else Heraeus-Seminar High-Resolution Pixel Detectors and their Use in Science and Society 23-25 May 2013, Bad Honnef

CMOS Image Sensors at the Rutherford Appleton Laboratory

Dr Renato Turchetta on behalf of the CMOS Sensor Design Group

Rutherford Appleton Laboratory (RAL) Oxfordshire, UK E-mail: renato.turchetta@stfc.ac.uk

Large area CMOS image sensor

Ultra-high speed CMOS image

sensors

CMOS Image Sensor at RAL

Br+

Large area sensor. Stitching.

Reticle size is just over $2 \text{ cm} \times 2 \text{ cm} \rightarrow$ 'stitching' Reticle is subdivided in blocks

Sensor size freed from reticle limitation → up to single sensor per wafer

Sensors of different sizes can be manufactured

Large area sensor. Stitching.

6

Transmission Electron Microscopy (TEM). Prior art.

Film: direct detection, very good resolution, non digital, poor S/N for weak exposure

CCD with phosphor:
 indirect detection
 (radiation hardness),
 phosphor ruins spatial
 resolution, good for
 tomography

Science & Technology Facilities Council

Technology

CMOS Sensor for TEM

- Direct detection
- Good single electron sensitivity
- ➢ Good MTF and DQE
- Radiation resistant
- ➢ 4Kx4K array
- > 16 million pixels

Detection of electrons in CMOS

2510 230	• 478 1532	343 1516 1835	138 1520 295	4400
•				
•	187 2830 1480	•		
210		•		• •
			• •	

A 16Mpixel sensor for TEM

- > 61x63 mm² silicon area (4 dies per wafer)
- ▶ 0.35µm CMOS
- > 16 million pixels, 4Kx4K array
- ➤ 14 µm pixels
- > 32 analogue outputs
- ≻ 40 fps
- Pixel binning 1X, 2X and 4X
- ROI readout
- > 83 e- rms noise
- Full well 120ke-

- Radiation hardness of >500 million of primary electrons/pixel (>20 Mrad)
- > 20% QE for visible light

Wafer-scale sensor for X-ray medical imaging

Motivations

- Extra-oral dental
- > with tiling:
 - Mammography
 - Chest imaging
 - Security

. . .

Guidelines

- Wafer-scale sensor
- > One sensor per 200 mm wafer
- > 3-side buttable \rightarrow 2xN tiling
- Radiation hard design
- Design for yield

> High resolution. 50 μ m pixel.

- > High-speed. Over 30 frames per second at full resolution.
- > Low noise. 68 e- rms in full frame to give very high sensitivity.

Main features

> Large area coverage. The sensor is 3-side buttable so that tiled

sensors can cover any length of an area 28 cm wide.

- > High dynamic range. Multiple programmable integration times
- > Binning x2, x4
- ROI readout

Lassena. A 6.7Mpixel, wafer-scale sensor

Optical performance						
		68	Full resolution mode (i.e. no binning)			
Rms electronic noise	e- rms	335	Bin 2x2 mode			
		608	Bin 4x4 mode			
		112,000	Full resolution mode (i.e. no binning)			
Linear full well	e-	1,253,000	Bin 2x2 mode			
		5,012,000	Bin 4x4 mode			
	e-	144,000	Full resolution mode (i.e. no binning)			
Maximum full well		1,374,000	Bin 2x2 mode			
		5,496,000	Bin 4x4 mode			
	bits	10.7	Full resolution mode (i.e. no binning)			
Dynamic range (Linear)		11.9	Bin 2x2 mode			
		13.0	Bin 4x4 mode			
	bits	11.0	Full resolution mode (i.e. no binning)			
Dynamic range (Maximum)		12.0	Bin 2x2 mode			
		13.1	Bin 4x4 mode			
	frames per second	35	Full resolution mode (i.e. no binning)			
Readout speed		70	Bin 2x2 mode			
		140	Bin 4x4 mode			
Quantum efficiency	Measured @ 540nm	50%				
Lag		Negligible				
Other						
Power supply	Power supply V 3.3					
Number of pads	480	All on one side				
Power Consumption (mW)	W	<2.5	CMOS only			

Pixelated Energy Resolving CMOS Imager, Versatile and Large

Percival target specifications

- Low energy X-ray detection <~ 2,000 eV</p>
- \succ High efficiency \rightarrow back-side illuminated and direct detection
- > High resolution \rightarrow 4kx4k on a 25µm pitch
- > Good single photon sensitivity \rightarrow low noise
- → High dynamic range, i.e. up to ~ $2*10^5$ photons @ 250 eV → high dynamic range (HDR) pixel --> ~120dB or full well >10 Me-
- > High frame rate \rightarrow 120 fps
- Fully digital

HDR pixel

Percival sensor floorplan

- > 16 MPix resolution
- > 120 fps (digital CDS)
- High dynamic range (4 gains per pixel)
- > 12+1bit ADC
- 15 bits per pixel (2 gain bits +
 13 bits)
- Digital I/O (LVDS)
- 60 Gbit/sec continuous data rate

Courtesy of A. Nomerotski et al., Oxford University

Time-Of-Flight Mass Spectroscopy

PImMS. A single particle CMOS Technology Facilities Council Image Sensor.

PImMS – Pixel Imaging Mass Spectrometry

22

Over 600 transistors Modified process developed with TowerJazz: deep Pimplant for 100% fill factor and true **CMOS**

PImMS family

PImMS1

72 by 72 pixel array

~ 2*10¹¹ pixel/sec

PImMS2

324 by 324 pixel array 70 µm x 70 µm pixel size

Time-code resolution = 25 ns (12.5 demonstrated already on PImMS1)

4 event stored in each pixel

12 bit time-code resolution

Analogue readout of intensity information

Equivalent pixel rate for standard full frame camera ~ 4*10¹² pixel/sec

Target specifications

- Ultra-high speed (>1MHz) with high frame depth (~200 cells)
- High resolution (~Megapixel)
- High-speed (~kfps) for continuous readout
- > 10 bit resolution
- > Flexible trigger (pre/post/center)
- > 35mm format

- u = Ultra-high speed
- CMOS for ease of use and readout speed
- CCD for in-pixel storage
- Start from Tower 180 nm CIS process with dual gate oxide: 3nm + 10nm
- Optimise process for high-speed, highefficiency charge transfer

Photodiode

Memory bank

- A vertical entry (VEN) bank with 10 cells
- Ten rows of lateral (LAT) banks, each with 16 cells
- A vertical exit (VEX) bank with 10 cells
- Total of 180 memory cells

Highly scalable architecture:

- Number of memory cells
- Number of pixels

Burst mode

Charge in the vertical exit registers is dumped in the reset node ...

... until receipt of the trigger. The status of the memory bank is then frozen and the sensor read out.

Performance summary

Parameter	Unit	Value	and a second
Pixel pitch (X)	um	30	
Pixel pitch (Y)	um	30	
Pixel format (X)		924	
Pixel format (Y)		768	
Number of pixels		709,632	
Frame rate (burst mode)	fps	5,000,000	
Frame rate (continuous mode)	fps	1,180	· · ··································
Pixel rate (burst mode)	Pixel/sec	1.42 T	
Pixel rate (continuous mode)	Pixel/sec	0.84 G	
Noise	e- rms	<10 e- rms	
Full well capacity	e-	11,700	
Camera gain	μV/e-	80	
Dynamic range		>1,170	
	dB	61.4	Kiral
	bit	10.2	
Fill Factor		11%	
Quantum officiancy	Without	2.3% (red)	
Quantum entciency	microlens	2.2% (blue)	

Figure 1: Consecutive images from a 1Mhz burst acquisition: Crack propagating through a glass tile at ~1km/sec

58

Science & Technology Facilities Council

Technology

... and also sensors for: ESA miniaturised radiation monitor, particle physics, neutron detection, high-energy X-ray detection, SPAD ...

Conclusions.

Demanding specifications from scientific instruments driving innovation \rightarrow delivering to industry as well

Working to deliver optimal solutions: design, technology, post-processing, manufacturing, ...

'Dreaming is mandatory' (H. Graasfma, yesterday) ...

We can help you make your dreams reality