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Physics goals of CBM 



Open charm reconstruction: The challenge 

M. Deveaux 3 

[W. Cassing, E. Bratkovskaya, A. Sibirtsev, Nucl. Phys. A 691 (2001) 745] 
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A collision rate of ~105/s Au+Au is required 
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Open charm reconstruction: Concept 

Primary Beam: 25 AGeV Au Ions (up to 109/s)  

Primary 
vertex Secondary 

vertex 
Short lived particle  
D0  (cτ = ~ 120 µm) 

Detector 1 
Detector2 Target 

(Gold) 

z 

Reconstruction concept for open charm 

Central Au + Au collision (25 AGeV) 

• A good time resolution to distinguish  
the individual collisions (few 10 µs) 

• Very good radiation tolerance 
  (>1013 neq/cm²) 

Reconstructing open charm requires:  
• Excellent secondary vertex  
   resolution (~ 50 µm) 
=> Excellent spatial resolution (~5 µm) 
=> Very low material budget (few 0.1 % X0) 
=> Detectors in vacuum 
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Requirements vs. detector performances (2003) 

Required Hybrid 
pixels 

Single point res. [µm] ~ 5 ~ 30 
Material budget  [ X0 ] ~ 0.3% ~ 1% 
Time resolution  [µs] few 10 0.025 
Rad. hardness   [n/cm²] > 1013 >> 1014 

CCD 
 

~ 5 
~ 0.1% 
~100 

<< 1010 

More sensitivity 

More statistics 

We need both 
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CMOS Monolithic Active Pixel Sensors (MAPS) 

Required Hybrid 
pixels 

Single point res. [µm] ~ 5 ~ 30 
Material budget  [ X0 ] ~ 0.3% 1% 
Time resolution  [µs] 10-100 0.025 
Rad. hardness   [n/cm²] > 1013 >> 1014 

CCD 
 

~ 5 
~0.1%* 
~100 

<< 1010 

MAPS 
(2003) 

3.5 
~0.05%* 
>1000 
> 1012 

*Sensor only 

Time resolution and rad. 
tolerance need improvement 
=> Perform R&D 



Sensor R&D: How to gain speed 
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External ADC 
Sensor Offline Cluster 

finding 

Output 

Add pedestal 
correction 

~1000 
discriminators 

On - chip 
cluster-finding 
processor 

Output: Cluster information 
(zero surpressed) 

Readout time 
Initially 1000 µs 
2013 115 µs 
Planned* few 10 µs 

*) See Talk of Marc Winter 



Radiation tolerance of MAPS 

M. Deveaux, 532. WE-Heraeus-Seminar, 23.-25 May 2013, Physikzentrum Bad Honnef 8 



What about radiation hardness? 
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Ionising radiation: 
• Energy deposited into the electron cloud 
• May ionise atoms and destroy molecules 
• Caused by charged particles and photons 

Non-ionising radiation: 
• Energy deposited into the crystal lattice 
• Atoms get displaced 
• Caused by heavy (fast leptons, hadrons) 
  charged and neutral particles  

Farnan I, HM Cho, WJ Weber, 2007. "Quantification of Actinide α-Radiation  
Damage in Minerals and Ceramics." Nature 445(7124):190-193. 
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Sensor R&D: The operation principle 

Reset +3.3V 
+3.3V 

Output 

SiO2 SiO2 SiO2 
N++ N++ N+ P+ 

P- 

P+ 

15µm 50µm 
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Sensor R&D: Tolerance to non-ionising radiation 
+3.3V 

Output 

SiO2 SiO2 

N++ 

N+ SiO2 SiO2 
P++ P++ P++ 

GND GND 

+3.3V 
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Sensor R&D: Tolerance to non-ionising radiation 
+3.3V 

Output 

SiO2 SiO2 

N++ 

N+ SiO2 SiO2 
P++ P++ P++ 

GND GND 

+3.3V 

Key observation: Signal amplitude is reduced by bulk damage 
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Sensor R&D: Tolerance to non-ionising radiation 
+3.3V 

Output 

SiO2 SiO2 

N++ 

N+ SiO2 SiO2 
P++ P++ P++ 

GND GND 

+3.3V 

Electric field increases the radiation hardness of the sensor 
Draw back: Need CMOS-processes with low doping epitaxial layer 

E 



S/N of MIMOSA-18 AHR (high resistivity epi-layer) 
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Plausible conclusion: Radiation tolerance >1014 neq/cm² reached 
• Cooling required to operate heavily irradiated sensors 

Safe operation 
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Noise and cooling 
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Cooling is needed to exploid the improved radiation tolerance 
Alternative solution: Fast integration times help 

tInt= 4 ms (slow) 
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Random Telegraph Signal 
Frequency and amplitude of RTS increase with temperature* 

Output signal of a selected MAPS pixel showing RTS 

Conclusion: RTS causes fake hits but cooling helps 

* First observed by: G
.R

. H
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o. 6, P. 2480 

M. Deveaux, 532. WE-Heraeus-Seminar, 23.-25 May 2013, Physikzentrum Bad Honnef 



Radiation tolerance vs. pixel pitch 
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 Sensor based on high-resistivity EPI layer

Non ionizing radiation tolerance depends strongly on pixel pitch 
Requirements of CBM are matched. 

20x40µm² CBM 



Radiation tolerance of MAPS 
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Sensor R&D: Tolerance to ionising radiation 

M. Deveaux 19 

Pixel with 
pedestal 
correction 

~1000 
discriminators 

On - chip 
cluster-finding 
processor 

Output: Cluster information 
(zero surpressed) 

Imagers (0.35µm): 
 

Tolerate 1-2 MRad if cooled. 
 
Fast pixels are so far vulnerable: 
 
• More transistors 
• No space for radiation tolerant 

layout in 0.35µm CMOS. 
 

⇒ Current tolerance: 0.5 MRad 

Progresses with 0.18 µm CMOS process 
⇒ Seems radiation tolerant to 10 Mrad 
⇒ Results shown by Marc Winter were confirmed 

M
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Tolerance to ionising radiation - Annealing 
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Annealing alleviates ionizing radiation damage substantially 
No indication for reverse annealing => Recover detector on the fly(?) 
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Just opening a bracked 
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Separation of ionizing and non-ionizing doses 

M. Deveaux, 532. WE-Heraeus-Seminar, 23.-25 May 2013, Physikzentrum Bad Honnef 22 

0 50 100 150 200 250 300
0
5

10
15
20
25
30
35
40
45
50
55
60  Reactor neutrons: 3·1014 neq/cm² + 3(?) Mrad

 Co-60 γ-rays: 3 Mrad
No

ise
T=

-3
°C

 [e
]

Annealing time T=+80°C [h]

Reactor neutrons are polluted with parasitic gamma rays. 
Does this have an impact on the measurements? 

Effect of gamma rays is reduced due to annealing. 
Apparently, reactor neutrons dominated. 
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Performances of MAPS (2013) 

Required Hybrid 
pixels 

Single point res. [µm] ~ 5 ~ 30 
Material budget  [ X0 ] ~ 0.3% 1% 
Time resolution  [µs] few 10 0.025 
Rad. hardness   [n/cm²] > 1013 >> 1014 

CCD 
 

~ 5 
~0.1%* 
~100 

<< 1010 

MAPS** 
(2013) 

3.5 
~0.05%* 

32 
> 3x1014 

*Sensor only 

All requirements demonstrated 
with dedicated sensors. 
 
Next step: Do it with ONE sensor 
 
Remaining issues: 
• Factor 2-3 in readout speed 
• Extend internal bandwidth by 

factor of 5 
⇒ In reach of 0.18 µm CMOS 

technology 

** Best of specialized sensors 



System integration – An MVD for CBM  
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CBM-MAPS consume <1W/cm² 
 
How to bias? 
How to evacuate heat? … 

…without material 

Aim for thickness of 0.3% X0 
(=0.3 mm Si equivalent) 
 
How to fix the sensors? 

… in vacuum? 



Integration of the sensors 
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Bending radius:  ~30 cm Size:  21.2 x 10.6 mm2 

The integration challenge: 

Integrate 50µm thick and bended 
silicon foils on a diamond support 



Naïve approach for system integration 
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Again, this structure will be fixed with 
 
 the novel  Anti Gravitation Glue™. 



Integration concept of the MVD 

Vacuum operation requires light and actively cooled device.  
• Use cooling support from diamond to move heat out of 

acceptance 
• Put heat sink and FEE outside acceptance 

CBM acceptance 

Outside acceptance 

Beam  
hole 

z[cm] rout rin 

5 2.5 0.55 
10 5.0 0.55 
15 7.5 0.75 

rout 

Geometry of MVD-stations 
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T. Tischler 

MIMOSIS-1B 

MIMOSIS-1A 

Discri 

Sensor 

Discri 

Sensor 

Discri 

Sensor 

Integration concept of the MVD 

MVD Prototype (mock up) 



Validation of the cooling concept 
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25 W / 16 cm² 

∆T = ~10K 

Vacuum compatible cooling concept for 1W/cm² seems robust. 

Aim: Validate the cooling concept with TPG 

Observation: 
• Temperature gradient on the station appears acceptable 
• A 150 µm CVD diamond support might be sufficient for station 1 
• Diamond => liquid heat transport needs optimization 

T. Tischler 



The CBM-MVD prototype 
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CVD* 

Al* 

*) CVD and Al with cut-outs were tested for 
the reference plandes of the telescope. The 
prototype bases on a 100% filled CVD layer. 



Tools 
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ZOOM 



Prototype: Beam test setup 
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MVD Prototype 

Ambitioned performances: 
• Up to 10 MIMOSA-26 running @10k frames/s, 3.5µm resolution. 
• Free-running, scalable DAQ based on HADES TRB – 100 MB/s. 
• Actively cooled prototype (<0.3% X0) 
• Passively cooled telescope arms (0.05% X0) 

T. Tischler 



Some first results 
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Result so far for the DUT: 
 
σx= 3.3 µm 
σy= 3.7 µm 
 
 

All performance plots very promising, analysis is being continued 



Stability of the readout 
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CERN-SPS 
Spill structure 

350 kHz/cm2 

f (Hz) 

Origin: quadrupoles 

Peak fluence: ~350 kHz/cm 2 (limited by 
CERN safety limits) 



Summary 

M. Deveaux 36 

The CBM-Experiment 
• CBM will be a heavy ion experiment located at FAIR 
• The MVD bases on CMOS-MAPS (CPS)  and is to measure 

open charm particles 
Integration concept for the CBM-Micro Vertex Detector: 
• Host MAPS on a vacuum compatible diamond cooling support 
• Readout with ultra thin flex print cables 
• Build local DAQ based on HADES TRB 
 

Results of prototyping:  
• Handling of sensors successful (close to 100% yield) 
• Readout system operated stable at highest rates applied 
• Preliminary results compatible with IPHC-results 

 
Next steps: 
• Demonstrate vacuum operation 
• Prepare TDR 
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