

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

An ultra-light vertex detector for the CBM Experiment

M. Deveaux, Goethe University Frankfurt and CBM on behalf of the CBM-MVD collaboration.

Physics goals of CBM

Open charm reconstruction: The challenge

M. Deveaux

Open charm reconstruction: Concept

Requirements vs. detector performances (2003)

	Required	Hybrid pixels	CCD
Single point res. [µm]	~ 5	~ 30	~ 5
Material budget [X ₀]	~ 0.3%	~ 1%	~ 0.1%
Time resolution [µs]	few 10	0.025	~100
Rad. hardness [n/cm ²]	> 10 ¹³	>> 10 ¹⁴	<< 10 ¹⁰

CMOS Monolithic Active Pixel Sensors (MAPS)

Time resolution and rad. tolerance need improvement => Perform R&D

	Required	Hybrid pixels	CCD	MAPS (2003)
Single point res. [µm]	~ 5	~ 30	~ 5	3.5
Material budget [X ₀]	~ 0.3%	1%	~0.1%*	~0.05%*
Time resolution [µs]	10-100	0.025	~100	>1000
Rad. hardness [n/cm ²]	> 10 ¹³	>> 10 ¹⁴	<< 10 ¹⁰	> 10 ¹²

Output: Cluster information (zero surpressed)

Radiation tolerance of MAPS

What about radiation hardness?

lonising radiation:

- Energy deposited into the electron cloud
- May ionise atoms and destroy molecules
- Caused by charged particles and photons

Non-ionising radiation:

- Energy deposited into the crystal lattice
- Atoms get displaced
- Caused by heavy (fast leptons, hadrons) charged and neutral particles

Farnan I, HM Cho, WJ Weber, 2007. "Quantification of Actinide α -Radiation Damage in Minerals and Ceramics." *Nature* 445(7124):190-193.

Sensor R&D: The operation principle

Sensor R&D: Tolerance to non-ionising radiation

Key observation: Signal amplitude is reduced by bulk damage

Sensor R&D: Tolerance to non-ionising radiation

Electric field increases the radiation hardness of the sensor Draw back: Need CMOS-processes with low doping epitaxial layer

S/N of MIMOSA-18 AHR (high resistivity epi-layer)

Plausible conclusion: Radiation tolerance >10¹⁴ n_{eq}/cm² reached
Cooling required to operate heavily irradiated sensors

Noise and cooling

Cooling is needed to exploid the improved radiation tolerance Alternative solution: Fast integration times help

Random Telegraph Signal

Frequency and amplitude of RTS increase with temperature*

Conclusion: RTS causes fake hits but cooling helps

Radiation tolerance vs. pixel pitch

Non ionizing radiation tolerance depends strongly on pixel pitch Requirements of CBM are matched.

Radiation tolerance of MAPS

Sensor R&D: Tolerance to ionising radiation

Output: Cluster information (zero surpressed)

Imagers (0.35µm):

Tolerate 1-2 MRad if cooled.

Fast pixels are so far vulnerable:

- More transistors
- No space for radiation tolerant layout in 0.35µm CMOS.

 \Rightarrow Current tolerance: 0.5 MRad

Progresses with 0.18 µm CMOS process ⇒ Seems radiation tolerant to 10 Mrad ⇒ Results shown by Marc Winter were confirmed

Tolerance to ionising radiation - Annealing

Ionizing radiation increases leakage current of diodes Annealing alleviates ionizing radiation damage substantially No indication for reverse annealing => Recover detector on the fly(?)

Just opening a bracked

Separation of ionizing and non-ionizing doses

Reactor neutrons are polluted with parasitic gamma rays. Does this have an impact on the measurements?

Effect of gamma rays is reduced due to annealing. Apparently, reactor neutrons dominated.

Performances of MAPS (2013)

All requirements demonstrated with dedicated sensors.

Next step: Do it with ONE sensor

Remaining issues:

- Factor 2-3 in readout speed
- Extend internal bandwidth by factor of 5
- \Rightarrow In reach of 0.18 µm CMOS technology

	Required	Hybrid pixels	CCD	MAPS** (2013)
Single point res. [µm]	~ 5	~ 30	~ 5	3.5
Material budget [X ₀]	~ 0.3%	1%	~0.1%*	~0.05%*
Time resolution [µs]	few 10	0.025	~100	32
Rad. hardness [n/cm ²]	> 10 ¹³	>> 10 ¹⁴	<< 10 ¹⁰	> 3x10 ¹⁴

** Best of specialized sensors *Sensor only

System integration – An MVD for CBM

Aim for thickness of 0.3% X_0 (=0.3 mm Si equivalent)

How to fix the sensors?

CBM-MAPS consume <1W/cm²

How to bias? How to evacuate heat? ...

...without material ... in vacuum?

Integration of the sensors

The integration challenge:

Integrate 50µm thick and bended silicon foils on a diamond support

Naïve approach for system integration

Again, this structure will be fixed with

the novel Anti Gravitation Glue™.

Integration concept of the MVD

Geometry of MVD-stations

Outside acceptance

Vacuum operation requires light and actively cooled device.

- Use cooling support from diamond to move heat out of acceptance
- Put heat sink and FEE outside acceptance

Integration concept of the MVD

Validation of the cooling concept

Aim: Validate the cooling concept with TPG

Observation:

- Temperature gradient on the station appears acceptable
- A 150 µm CVD diamond support might be sufficient for station 1
- Diamond => liquid heat transport needs optimization

Vacuum compatible cooling concept for 1W/cm² seems robust.

The CBM-MVD prototype

*) CVD and AI with cut-outs were tested for the reference plandes of the telescope. The prototype bases on a 100% filled CVD layer.

CVD^{*}

AI^{*}

BONDEDDDDD Chia MES-3 - Pin Mes Problecan

Prototype: Beam test setup

Ambitioned performances:

- Up to 10 MIMOSA-26 running @10k frames/s, 3.5µm resolution.
- Free-running, scalable DAQ based on HADES TRB 100 MB/s.
- Actively cooled prototype (<0.3% X₀)
- Passively cooled telescope arms (0.05% X₀)

M. Deveaux

Some first results

Result so far for the DUT:

 $σ_x$ = 3.3 μm $σ_y$ = 3.7 μm

All performance plots very promising, analysis is being continued

Stability of the readout

Summary

The CBM-Experiment

- CBM will be a heavy ion experiment located at FAIR
- The MVD bases on CMOS-MAPS (CPS) and is to measure open charm particles

Integration concept for the CBM-Micro Vertex Detector:

- Host MAPS on a vacuum compatible diamond cooling support
- Readout with ultra thin flex print cables
- Build local DAQ based on HADES TRB

Results of prototyping:

- Handling of sensors successful (close to 100% yield)
- Readout system operated stable at highest rates applied
- Preliminary results compatible with IPHC-results

Next steps:

- Demonstrate vacuum operation
- Prepare TDR