

The development of CVD-Diamond Detectors for Nuclear and HE Physics Research and its Impact to Related Fields

E. Berdermann, GSI Helmholtz Zentrum für Schwerionenforschung

<u>Cooperators</u>

Funding

HadronPhysics Collaborations HGF Detector Portfolio Group The RD42 Collaboration <u>Diamond Detector Users</u>: GSI, CERN, CEA, LAL, ...

<u>Industrial Partners</u> Element Six Diamond Materials MICRON Semiconductors (incorp. Diamond Detectors Ltd)

EC (FP6, FP7) HadronPhysics₁₋₃

EC (FP7) Marie Curie

2

- Objectives
- Detector Grade' CVD-Diamond Materials
- Technologies and Characterization of CVDD
 Detectors
- Main Applications in HE and Nuclear Physics
- Selected Applications in Related Fields
- Conclusions and Outlook

Radiation hard, ultra fast detector systems

for experiments with high-intensity 'hadron' beams

beam diagnostics

lectives

- particle tracking and TOF
- ion spectroscopy/calorimetry

Parameters $\Delta E, E, T, (x,y)$ Particlesp, e, n, HIs, X-rays

DG CVD-Diamond Materials

CVD Diamond Growth Process

Polycrystalline PCD Areas: up to 5 inch wafer

CCE: (typ.) $\leq 30\%$; (DG) $\approx 60\%$

- Homoepitaxial HSCD Areas: (max.) 10 mm x 10 mm CCE > 98%
- SC Dia-on-Iridium (DOI) Areas (target): up to 4 inch wafer CCE (typ.) >> 70%; (best) ≥ 93%

Thickness of all types: 5 - 500µm

-Diamond Materials

6

VDD Physical Properties

PARAMETER	CVDD	SILICON	GaAs
Ζ	6	14	32
ρ [g/cm ³]	3.5	2.3	5.316
d _{Lattice} [Å]	3.57	5.43	5.65
$\sigma_{W}^{(300K)}$ [Wcm ⁻¹ K ⁻¹]	20	1.3	0.55
E _{gap} ^(300K) [eV]	5.45	1.17	1.42
E _{displacement} [eV]	45	24	17 -18
energy/e-h [eV]	13.1 (12.84)	3.6	4.2
X ₀ [cm]	12	9.4	2.3
dE/dx [keV/µm]	0.47	0.38	0.75
ε _r	5.7	11.9	12.9
E _{break} [V/cm]	107	$3 \ge 10^5$	4.10^{5}
$\mu_0 (e)^{300K} [cm^2/Vs]$	2200-4500	1500	≤ 8500
$\mu_0 (e^+)^{300K} [cm^2/Vs]$	1600-3800	600	≤ 400

7.

Crystal Structure – Birefringence Images

Dia-on-Dia

Dia-on-Iridium

Dia-on-Silicon

'defect-free' single crystal Homogeneous isolated threading dislocations + strain

'defective' single Homogeneous high dislocation density + strain 'polycrystalline'
Inhomogeneous
single crystal grains +
grain boundaries

8

he Diamon Surrace

Reconstruction: Saturation of dangling bonds by adsorbate atoms

Metallization: Diamond-contact interface

 $\Phi = \mathsf{E}_{\mathsf{a}} + \chi - \Phi_{\mathsf{M}}$

 RWF

3.0

4.0 µm

E. Berdermann et al., Diam. Relat. Mater. 19 (2010) 358-367

1.0

2.0

1.0

0

0

The development of CVD-diamond detectors for nuclear and high-energy physics research Hereaus Seminar 23. Mai 2013 9 Detector Electrodes - pads, strips, pixels ...

Sputtered Ti/Pt/Au, 10min annealing at 500°
 C

echnology of CVPD Detectors

- Sputtered CrAu; pure Al; TiW, or graphitic
- Operation Principle: 'solid-state ionization chamber'

Intrinsic Diamondno pn-junction,no cooling

Drawing from Jieh-Wen Zsung, PHD Thesis, Uni Bonn, 2012

High-frequency designs of DD for single-channel readout

echnology of CVDD Detectors

Beam-halo moni, 20mm ⊗: a diamond-ring counter

Beam-halo and START

\Box Every detector channel is a 50 Ω-micro stripline

Multipurpose quadrant sensor for removable small-area detectors

Diamond Hybrid SC and PC Pixel Detectors Multichannel – ASIC readout

M

echnology

- Metallization: Ti-W (-Au),1µm
 - Bump bonding and flip-chip technology;
- $\approx 15 \ \mu m \ bumps$ (In or Sn/Ag)
 - No guard rings

etecto

IV Characteristics

haracterization CVP

etectors

Characterization CVDD Detectors

TCT with Short-Range Particles

CS measurements with 90 Sr electrons of E_{β} > 1MeV

ΤСТ (α)

rainsp

 $v_{s}^{e} = (0.85 \pm 0.08) \times 10^{7} \text{ cm/s};$ $\mu_{0} = (2071 \pm 212) \text{ cm}^{2}/\text{Vs}$ $v_{s}^{h} = (1.34 \pm 0.05) \times 10^{7} \text{ cm/s};$ $\mu_{0}^{h} = (2630 \pm 123) \text{ cm}^{2}/\text{Vs}$ TCT (α) + CCE (⁹⁰Sr)

Parameters and Liter

M. Pomorski et al., phys. stat. sol. (a) 202, no. 11, pp. 2199

haracterization CVDI

Energy and Energy Loss resolution

electo

ntrinsic TOF resolution

Radiation hardness studies

haracterization

M. Pomorski, PhD Thesis (2008)

Detectors

Charge Collection Thickness Dependence Preliminary Summary of Proton Irradiations Z-axis: CCD distance between electrodes [microns] 500 collection distance (um) 450 400 400 Red Data: strip scCVD (x-shifted by -3.8) Open Red: pixel scCVD (x-shifted by -3.2) 350 Blue Data: strip pCVD 300 300 $\frac{\text{CCD}_{0}}{1 + k^{*} \Phi^{*} \text{CCD}_{0}}$ 250 Fit : CCD = charge 200 200 150 100 100 50 0 5 10 15 20 25 1e+13 Irradiation (x10^15 p/cm^2) 1e+15 1c+16 1c+14 intergral fluence [particle/cm-2] The RD42 Collaboration (2008)

OVAD

thinner = 'harder'

Damaged HSC Samples

haracterization C

M. Pomorski, PhD Thesis (2008)

Hereaus Seminar 23. Mai 2013 The development of CVD-diamond detellereaus Serhinan 24. Mgai-204-83y physics research 21

<u>Applications in Nuclear and HE Physics</u>: Diamond Detectors for GSI, FAIR, and LHC

In-beam START-VETO detectors for HADES and CBM

J.Pietraszko, 21st CBM Collaboration Meeting

HIL and MIP Detectors for GSI/FAIR

CBM \rightarrow The challenge:10⁹ part/s \rightarrow 10⁷ interactions/s;

 $290 \ \mu m$ pitch $d_D \approx 60 \ \mu m$

24

J. Pietraszko, 21st CBM Collaboration Meeting

J.Pietraszko, 21st CBM Collaboration Meeting

Tracking and TOF Detectors for Experiments with Radioactive Beams at the SFRS/FAIR

heavy ions with ~700MeV/u

Measurement of all kinematic variables in a HI reaction Different tasks: High resolution tracking in the super FRS, radiation hard (SFRS) 10⁶ cm⁻¹ s⁻¹ 2 x TOF (SFRS – target) (reaction products)

R. Gernhäuser (TUM)

Tracking and TOF Detectors for Experiments with Radioactive Beams at the SFRS/FAIR

ATLAS Insertable B Layer (IBL) Provide ATLAS with a 4-layer pixel tracker

Sensors for LHC and HL-LE

Pixel upgrade for increased L = $3x10^{34}$ cm⁻² s⁻¹

Hügging, ... Wermes et al., Uni Bonn \longrightarrow 3 promising sensor technologies: planar Si, 3D silicon, <u>and polycrystalline diamond</u>

Pixel Sensors for LHC and HL-LHC

ATLAS Diamond PC and SC Pixel Sensors

Readout Chip FE-I4:

80 x 336 pixels 50 μ m x 250 μ m 336 rows à 50 μ m pitch each channel C_D = (21.47 ± 0.1) fF

Sn/Ag bump bonding and flip-chip technology (e.g. at IZM)

Spatial Resolution:

SC sensors: σ_{row}= (8.9 μm ± 0.1) μm
 PC sensors: digital res.

N. Wermes, 'Pixel detectors for charged particles', NIM A **604** (2009) Jieh-Wen Zsung, PHD Thesis, Uni Bonn, 2012

Sensor + FE-I4 mounted

4.8 mm

The CMS Pixel Luminosity Telescope (PLT)

Sensors for LAC and HL4L

CMS SC pixel detectors for the PLT

Sensors for LHC and HLALF

Unique dual readout capability:

Luminosity mode

- Fast output (40 MHz bunch-by-bunch),
- individual pixel threshold, masking ...

Tracking mode

- Full pixel readout (≈ 1KHz),
- pixel address and pulse height of each hit

Spatial Resolution:

□ σ_{row} =29 (43) μm for 2(1)-hit cl. □ σ_{col} =23 (29) μm for 2(1)-hit cl.

PSI 46V2 chip 80 x 52 pixels, 100 μm x 150 μm

area 8mm x 7.8mm

R. Hall-Wilton et al., NIM A 636 (2011) S1 30-S1 36

New Diamond Detector Technology Silicon-on-Diamond (SOD) devices

Lagomarsino, Parrini, Sciortino et al., PoS(RD09)029

1) SOD detectors for HEP with matrices of TSV contacted with diamond by means of deep graphitic spots.

2) SOD devices with graphitic columns for biological studies as interface between a neuronal culture and a FEE for stimulation and readout.

Lagomarsino, Parrini, Sciortino et al., PoS(RD09)029

First SOD Prototype(s)

SOD Microelectrode Arrays (MEAs) for biological studies

Growth of neuronal cultures on diamond

7 DIVs

Diamond is biocompatible: MEAs can be connected via diamond graphitic columns to neuron cultures.

First SOD Prototype(s

Si MAPs laser-bonded on Diamond Sensors

Si MAPS chip thinned to $20\mu m$ from the rear side and bonded to a (biased) diamond plate.

University and INFN Florence, S. Lagomarsino, S. Sciortino et al.

<u>Applications in Related Fields</u>: Detectors for Extreme Radiation and Temperature Conditions

HSC neutron and UV-VUV detectors for JET and ITER

Joint European Torus (JET) Chulam (UK)

ITER

Si detectors are replaced approximately after 1 year at JET (if working with tritium). At ITER the 14MeV neutron flux will be too high for conventional detectors: 1x10¹⁴ neutron/cm² RADIATION HARDNESS REQUIRED

> D. Lattanzi et al. (2009), *Fusion Engineering and Design* **84**, pp. 1156–1159 Almaviva, S., Marinelli, M., Milani, E., et al. (2008), *J. Appl. Phys.* **103**, 054501

HSC for simultaneous measurements of fast and thermal neutrons

eutron Sensors

HISSION/HUS

Almaviva, S., Marinelli, M., Milani, E., et al. (2008), J. Appl. Phys. 103, 054501.

Position Monitors for intense, highly focused X-ray Beams (ESRF, SOLEIL, PETRA III, EXFEL)

BI $\approx 10^{8}$ - 10^{10} 5-20 keV X rays Beam spot: 0.1-50 μm

XBPM at ID21 ESRF beamline

Morse, J., Solar, B., Graafsma, H. (2010), J. Synchrotron Radiation Vol. 17, Iss. 4, pp. 456-464

Real-Time Monitors for the high-intensity white Beams of the NSLS ______ operating at 2.8 GeV,

Muller, E. M., Smedley, J., et al., J. Synchrotron Radiation, 19 (2012), pp. 381-387.

The VUV diamond sensors of the Large Yield RAdiometer (LYRA) on PROBA 2

Courtesy of ESA

The VUV diamond sensors of the LYRA radiometer

Radiation hardness studies

compared:

Conclusions and Outlook (LHC

N. Wermes, 'Pixel detectors for char Silicon data compiled from M. Moll 3D simulations, Pennicard 2007

	25 MeV protons	24 GeV protons
k _{diamond}	$3.02^{+0.42}_{-0.36}$	$0.69^{+0.14}_{-0.17}$
k_{Si}	$10.89^{+1.79}_{-1.79}$	$1.60^{+0.38}_{-0.38}$

HI tracking and TOF: PC, wafer scale, 2D strips p and light ions TOF: SC, 2D strips, mod. pixels

Conclusions and Outlook (FA

FAR <u>FUTURE</u>: All applications, All designs (except high-resolution ΔE

The Dreams

- Large-area monolithic diamond detectors for high-resolution MIP tracking and TOF:
 - Diamond sensor pixels, grown on DOI wafers with integrated FEE (i.e. with diamond electronic devices).

Thin, radiation hard sensors closest connected to dedicated radiation hard FEE