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Outline 

TDC and

photon counter

• Geiger-mode APD basics
• G-APD development in Philips/NXP
• Digital SiPM architecture
• Many measurement results, scintillators & laser 
• Potential extensions and some new ideas
• Conclusion
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G-APD: Avalanche Multiplication

TDC and

photon counter

• Incident photon is absorbed in Silicon, generates one electron-hole pair

• Both carriers are separated and accelerated by the strong  electric field

• Gaining enough energy, both can impact-ionize and generate new carriers

• Below breakdown: charge is approximately proportional to number of photons

• Above breakdown: e-h pair can generate full breakdown of the diode

• Thermal generation of carriers acts as a noise component (dark counts)

(Aull et al.)
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G-APD: Avalanche Breakdown

TDC and

photon counterM ( z ) = 1 + ∫zn

z
αnM ( z ' )dz ' + ∫z

z p
α pM (z ' )dz '

N P

zn zpzz‘
Avalanche multiplication equation:

Breakdown condition:

∫zn

z p
αn exp (−∫z '

z p
(αn−α p )dz '' )dz ' = 1

M n =
1

1 − ∫zn

z p
αnexp (−∫z '

z p
(αn−α p )dz '')dz '

Solving for M leads to:

(McIntyre, 1966)

where α
n
  and α

p
 denote the position-dependent ionization rates in silicon
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G-APD: Ionization Rates αn and αp

• Number of new carriers created per cm of travel
• Ionization rate of holes approximately ½ that of electrons
• Mostly based on measured data, theoretical prediction still difficult

αi = αi ,∞exp (−biE ) , i = n , pChynoweths law:

Coefficients by Overstraeten and de Man (1970):

  αn,∞ 

[cm-1]
bn Field range

(kV/cm)
αp,∞

[cm-1]
bp Field range

(kV/cm)

703E3 1231E3 175 600
1582E3 2036E3

1
7
5

400

671E3 1693E3 400 600

E = local electric field strength

For a detailed discussion of CMOS-based G-APDs see the thesis of W. Kindt.
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G-APD: Quantum Efficiency

• Wavelength-dependent absorption in Silicon
• Charge collection area (drift, diffusion)
• Minority carrier lifetimes (doping level, defect density)
• Interferences in the back-end stack (metal/insulator layers and passivation)

1µm junction incl. 5-metal stack and passivation
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G-APD: Avalanche Probability

P p( z ) = P pe( z ) + P ph( z ) − P pe( z )P ph( z )

dP ph
dz

= −(1 − P ph )α p(P pe + P ph − P peP ph)

P pe( z+dz ) = P pe ( z ) + αndz⋅P p (z ) − P pe ( z )⋅αndz⋅P p( z )

Probability depends on the position of the e-h generation:

For electrons (similar for holes):

Leads to:
dP pe
dz

= +(1 − P pe )αn(P pe + P ph − P peP ph)

Function of bias and position



Heraeus Seminar  2013 8

G-APD: Photon Detection Probability

MPPC data taken from Hamamatsu data sheet

scaled with the fill factor of the MPPC

• Electrons lead to higher PDE → let electrons start the avalanche
• In P-on-N diodes, electrons travel from top (anode) into the bulk

→ P-on-N G-APDs with shallow junction exhibit higher sensitivity in blue/UV

→ N-on-P G-APDs with larger depletion depth have higher sensitivity in the NIR
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G-APD: Dark Counts

• Thermal generation of carriers (diode leakage) and trap-assisted tunneling
• Direct band-to-band tunneling at low breakdown voltages (< 25V)
• 100kHz up to several MHz per mm² at room temperature
• Reduction of the DCR by factor of 2 every 8°K
• Exponential dependence on excess voltage

→ Reduce the number of generation centers in the diode (gettering)
→ Reduce excess voltage (but also sensitivity!)
→ Reduce the temperature

(D. Renker, 2005)
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G-APD: Optical Crosstalk

(Lacaita, 1993)

• Hot carrier luminescence
• 100k carriers generate on average 3 photons with energy higher than 1.14eV (Lacaita,1993)
• Several physical processes combined, full band structure due to high carrier energies
• Isotropic emission process; photons can trigger neighboring cells 
• Emission allows simple characterization of the device (photoemission microscopy)

→ Reduce current through the device during discharge (active quenching)

→ Optical isolation trenches filled with metal effective to suppress crosstalk

(Renker, 2005)

Hamamatsu, 1-53-1A-1

70µm cell size
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G-APD: Afterpulsing

• Pulses correlated to a previous pulse
• Impurities (Iron, Gold) and defects (point, dislocation) create deep levels in the band gap
• These can trap a carrier during a discharge and release it later on to create new pulse
• Time constant depends on the energy of the deep level (impurity type → process control) 
• Time constants in the order of nanoseconds to microseconds
• Time constants increase at low temperatures (factor 3 every 25°K)
• Most of the carriers are released early after the initial pulse 

→ Reduce current through the device during discharge (active quenching)
→ Increase hold-off time before recharge if possible (active recharge)

(S. Cova, 2003)

(D. Renker, 2005)
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G-APD: Passive Quenching/Recharge

• Limit the recharge current to < 20µA (R ~ V
ov

/ 20µA)

•  
Output is charge pulse: Gain G = C

diode 
x V

ov

•  
Recovery time: ~ R x C

diode

•  
Simple concept but tricky to implement (high-ohmic resistors needed)

• Used in most SiPMs as the summation can be easily implemented
• Output signal compatible with that of PMTs (re-use of readout infrastructure) 

SiPM
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G-APD: Active Quenching/Recharge

• Sense the voltage at the diode terminal
•  

Use transistors to actively discharge/recharge the diode

•  
Flexibility: programmable timing possible, disabling of faulty cells

•  
But: requires SPAD/CMOS or 3D integration (cost)

• In case of SPAD/CMOS integration, electronics area affects fill factor
• Fast digital signals (gate delays of ~30ps, rise/fall times ~90ps), low parasitics

 Separation of photon number, time of arrival and position information 
 right at the detection element could potentially enable new detector concepts
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Digital Silicon Photomultiplier
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Early Designs: DPTC1 (2005/6)

SiPM

A
P

D
3

TDC

APD4

APD4 APD4

A
P

D
2 +

3

APD2
APD2

• First test chip submitted in standard

  HV CMOS 0.18µm multi-project wafer
• 5mm², ~400 diodes, 8 TDCs, < 20ps bin width
• Proof of concept, but sub-optimal performance found 
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Early Designs: DPTC1 (2005/6)

• First Geiger-mode pulses and photoemission

  confirm working diodes
• Long pulse due to large parasitic capacitance 

  of the probe and large quenching resistor
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Process Development (2007/2008)

• Goal: integrate the SPAD monolithically into the 0.18µm CMOS process
• Challenge: do not change the CMOS process (re-qualification needed)
• Extensive TCAD simulations to optimize the diode performance
• Test vehicle: multi-layer reticle mask set with > 4000 diodes
• Semi-automated wafer level test equipment needed
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CMOS Integration

TDC and

photon counter

Not all attempts were successful ...

… but finally … 

Photo-emission with DC current.
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Digital SiPM – New Type of Silicon Photomultiplier 

• Cells connected to common readout

• Analog sum of charge pulses

• Analog output signal 

Analog SiPM

www.hamamatsu.com

TDC and

photon counter

Digital Cells

Digital SiPM

• Each diode is a digital switch

• Digital sum of detected photons

• Digital data output

Digital output of
• Number of photons
• Time-stamp
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Digital SiPM – Cell Electronics

• Cell electronics area: 120µm²

• 25 transistors including 6T SRAM

• ~6% of total cell area

• Modified 0.18µm 5M CMOS

• Foundry: NXP Nijmegen
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Digital SiPM – Sensor Architecture

• Operating frequency: 200MHz

• 2 x TDC (bin width 23ps, 9bit)

• Configurable trigger network

• Validation logic to reduce sensor

  dead time due to dark counts

• JTAG for configuration and

   scan test

• Electrical trigger input for 

  test and TDC calibration
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Digital SiPM – Sensor Family

• 8192 cells
• Integrated TDC
• On-chip inhibit memory controller
• External FPGA controller
• 160 bond wires

DLD8K Demonstrator (2009):

DLS 6400-22 digital SiPM (2010):

• 25600 cells
• 2 TDCs, controller, data buffers
• JTAG for configuration & test 
• 48 bond wires
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Digital SiPM – Dark Counts

Control over individual SPADs enables detailed device characterization

• Over 90% good diodes (dark count rate close to average) 
• Typical dark count rate at 20°C and 3.3V excess voltage: ~150cps / diode
• Low dark counts (~1-2cps) per diode at -40°C



Heraeus Seminar  2013 24

Pixel Logic, TDC

and photon counter

Digital SiPM – Photon Detection Efficiency

• Peak PDE >30% at 430nm and 3.3V excess voltage

• No anti-reflective coating used, optical coupling not optimized

• Needs independent verification

Effective PDE:

LYSO(Ce) 25.9%

CsI(Na) 23.7%

CsI(Tl) 20.5%

NaI(Tl) 24.2%

BGO 24.2%

LaBr
3
(Ce) 9.6%
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Pixel Logic, TDC

and photon counter

Digital SiPM – Optical Crosstalk

Pixel Logic, TDC

and photon counter

Direct measurement using one ‚bad‘ diode as light generator:
• Acquire dark count map around the light source for corrections
• Activate light source and test diode simultaneously:

• Events with 1 photon are dark counts
• Events with 2 photons are either randoms or optical crosstalk

• Use the dark count map to correct for randoms
 Typical total optical crosstalk in a 5x5 neighborhood: 7% - 9%
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Digital SiPM – Temperature Sensitivity

Pixel Logic, TDC

and photon counter

ps-laser trigger, 2100 photons/pulse, 24ps FWHM timing resolution

• PDE drift: 0.33% K-1

• TDC drift: 15.3ps K-1

• PDE drift compensation by adapting the bias voltage
• TDC re-calibration using electrical trigger 
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Digital SiPM – Photon And Time Resolution

• Sensor triggered by attenuated laser pulses at first photon level
• Laser pulse width: 36ps FWHM, λ = 410nm
• Contribution to time resolution (FWHM): 

SPAD: 54ps, trigger network: 110ps, TDC: 20ps

• Trigger network skew currently limits the timing resolution
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Digital SiPM – Scintillator Measurements

Pixel Logic, TDC

and photon counter

• 3 x 3 x 5 mm³ LYSO in coincidence, Na-22 source
• Time resolution in coincidence: 153ps FWHM
• Energy resolution (excluding escape peak): 10.7%
• Excess voltage 3.3V, 98.5% active cells
• Room temperature (31°C board temperature, not stabilized) 
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New Digital SiPM – DPC 3200-22 (2011)

New Sensor Design (DPC 3200-22):

• 3200 cells per pixel, 12800 cells per sensor

• 59.4µm x 64µm cell size, 78% area efficiency (incl. cell electronics)

• Based on (and compatible to) DLS 6400-22 sensor

DLS 6400-22 DPC 3200-22



Heraeus Seminar  2013 30

Digital SiPM – DLS 3200-22 Dark Count Rate

Pixel Logic, TDC

and photon counter

• Dark count rate at 20°C, 3.3V excess voltage

• Average dark count rate ~ 550cps per SPAD

• Scales with SPAD sensitive area (2954µm² vs. 783µm² in DLD8K)
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Digital SiPM – DLS 3200-22 Optical Crosstalk

Pixel Logic, TDC

and photon counter

• Optical crosstalk ~18% due to higher diode capacitance (factor ~2.8)

• Linear dependence on excess voltage (as expected)

• Has to be taken into account in saturation correction
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Digital SiPM – DLS 3200-22 Energy Resolution

Pixel Logic, TDC

and photon counter

• 4 x 4 x 22 mm³ LYSO crystal

• Vikuiti reflector

• Attached with Meltmount

•  Na-22 source
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Digital SiPM – DLS 3200-22 Energy Resolution

Pixel Logic, TDC

and photon counter

• 3.3V excess voltage, 20°C

• 99% active cells

• Non-linearity correction 

• Optical crosstalk included [Burr et al.]

• dE/E = 9.2%
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Digital SiPM – Small Crystal Identification

 

• Laser measurements on a 0.5mm grid
• Best case (no scatter, no light guide)
• ~1600 photons per laser pulse
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Digital SiPM – Small Crystal Identification

 

• Array of 30 x 30 LYSO crystals

• Crystal size: 1 x 1 x 10mm³

• Coupled via light guide to one

  digital SiPM tile (4 x 4 dies)

• Data plotted in log scale

• Strong floodmap compression 

  close to tile edge due to missing

  neighbor tiles  

P. Düppenbecker, Philips Research
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DLD8K – Čerenkov Light Detection

• PMMA radiator coupled via air gap to two DLD8K dSiPMs in coincidence

• Box isolated and temperature-controlled with a TEC to 2 – 3°C

• External beam gate signal to minimize randoms due to low beam duty-cycle

• Cooperation between Giessen University (Prof. Düren) and Philips DPC

• Test beam at the CERN SPS in Summer 2010

beam
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Laser Tests

• Pico-second laser pulses
• Wide beam (no beam splitter used) 
• 95% diodes active
• 3.3V excess voltage
• T=10°C
• CRT σ = 17.49ps
• Sensor resolution = 12.4ps
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Setup at CERN SPS Test Beam

• Beam: protons at 120GeV, intensity ~5000/sec, beam diameter ~ 6mm RMS 
• Difficult alignment (no alignment marks available), CERN survey not available
• USB extender cable failed to work, fortunately the cable was a CAT5 ethernet
• Beam duty cycle ~ 17%, significant randoms background

•  External beam gate signal provided by the Gießen Team
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Pixel Logic, TDC

and photon counter

3939

Digital SiPM – Čerenkov Light Detection

• 95% diodes active
• 3.3V excess voltage
• T=3°C, DCR = 250/177kHz
• First photon trigger
• All events validated
• CRT σ = 93.16ps
• Sensor resolution = 65.9ps
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Future Extensions & New Applications
• Current dSiPM is best suited for scintillator readout:

– Relatively large dead time when used for single photon detection

– Loss of useful information (i.e. photon position, pulse shape)

– Suboptimal use of real-estate when used for other applications

• Extension/modification of the digital SiPM architecture:

– Cost-effective way of adding new features

– But: any change in the present design means NRE (new mask set, test wafers)

– Typically, any change means large design effort (full custom design)

– Physical dimensions (chip size, diode size, bond pads) must not change

• There is much more:

– Focal plane computing

– Integration of data processing/reduction, image processing, etc.

– But: is there enough volume to justify the NRE?

• Philips/NXP could offer access to Multi-Project Wafer runs to test new ideas

– contact us if you are interested
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Summary

• Digital SiPM implemented in a high-volume CMOS process

• Configurable architecture, individual control of each SPAD

• Two-sides tile-able sensor design

• Tiles of 4 x 4 sensors developed to enable large-scale system integration

The author would like to thank Dr. Hein Valk of NXP Semiconductors 

for his support and excellent cooperation during the process development 
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Digital SiPM – State Machine

• 200MHz (5ns) system clock

• Variable light collection time up to 20µs 

• 20ns min. dark count recovery

• dark counts => sensor dead-time

• data output parallel to the acquisition

  of the next event (no dead time)

• Trigger at 1, ≥2, ≥3 and ≥4 photons

• Validate at ≥4 ... ≥64 photons (possible 

   to bypass event validation completely)

ready

valid?

collection

readout

recharge

yes

no
5ns – 80ns

0ns – 20µs

680ns

10ns – 40ns
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Digital SiPM – Sensor Architecture

JTAG in data out LVCMOS clock & sync

LVDS clock & syncJTAG out

TDC
Pixel 

controllers

Main 

controller

JTAG 

controller

Trigger

logic

Sub-pixel
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Digital SiPM – Trigger Logic

• Each sub-pixel triggers at first photon

• Sub-pixel trigger can be OR-ed or AND-ed

   to generate probabilistic trigger thresholds

• Higher trigger threshold decreases system

  dead-time at high dark count rates at the

  cost of time resolution  

Sub-

pixel

Sub-

pixel

Sub-

pixel

Sub-

pixel

AND/OR AND/OR

AND/OR

Pixel trigger

First photon trigger
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Digital SiPM – Trigger Network Skew

• Diodes activated one-by-one and triggered by a divergent ps-laser pulse. 
• Many photons per diode&pulse → negligible avalanche spread uncertainty.
• Laser trigger&pulse spread and TDC resolutions are included in the final σ. 
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Digital SiPM – Time-to-Digital Converter

• Two identical 9 bit TDCs running with 180° phase-shifted clocks

• 100MHz reference clock generated from 200MHz system clock

•  Each TDC has ~0.5ns wide 'blind spot' close to clock edge → bin 0

•  Two-phase clock guarantees at least one valid TDC value for any event

•  For ~90% of the events, both TDC values can be used to increase accuracy

•  TDC calibration using dark counts or randomly distributed events
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• Average TDC bin width 23 ± 2.8ps

• Non-linearity corrected by look-up tables inside the readout FPGA

• Online correction for TDC drift due to temperature and voltage variation

• Periodic TDC calibration test using external (SYNC) signal

48

Digital SiPM – Time-to-Digital Converter
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Digital SiPM – Trigger Network Skew

Pixel Logic, TDC

and photon counter

 

• Chip illuminated by divergent picosecond laser beam

• Laser trigger synchronized to the reference clock

• All diodes measured sequentially

• 10000 events captured and time stamp histogram fitted with a Gaussian

• Gaussian mean → delay of the selected trigger path

• Average trigger network delay subtracted from the data
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