PHILIPS sense and simplicity

Digital Photon Counters as Scalable Building Blocks for Various Applications

Carsten Degenhardt

Philips Digital Photon Counting, Aachen, Germany

Heraeus Seminar Bad Honnef May 23rd, 2013

What is Philips Digital Photon Counting (PDPC) doing ?

Philips Digital Photon Counting is designing and manufacturing scalable detectors based on digital Silicon Photomultiplier (dSiPM) technology – a new type of advanced solid state light detector, now called Digital Photon Counter (DPC).

Potential Applications

- Medical Imaging
- Life Sciences
- High Energy Physics
- Material Testing/Detection
- Process Control

Philips Digital Photon Counting

Solid State, Digitization & Integration Win

Philips Digital Photon Counting

Disruptive Technology: Example TV/displays

size/format:

- just standing on support
- big 3D box
- size limited by tubes
- image quality:
 - 60/100/200 Hz flickering
 - initially higher resolution
 - limited contrast
- functionality:
 - just TV or PC display
 - single medial
- safety: HV
 - vacuum, risk of implosion

- wall hanging
- almost 2D, displays everywhere
- flat, no size limitation
- no flickering anymore
- resolution nearly unlimited
- real life contrast
- internet, TV and PC merge
- multi-medial
- no HV
- no risk of implosion

Outline

Concept of scalability, from pixels to systems

Applications

- Positron Emission Tomography
- Cerenkov light detection

Outlook

The Philips tree of scalable DPC technology

Philips Digital Photon Counting

Digital Photon Counters enable Integrated "Intelligent" Sensors

DPC3200-22-44

- Clock distribution
- Data collection/concentration
- TDC linearization
- Saturation correction
- Skew correction

<u>Flash</u>

- FPGA firmware
- Configuration
- Inhibit memory maps

Further integration: Detector Module

- Modular design incl. 2 x 2 tiles, approx. 6.6 x 6.6 cm²
- Module PCB for power supplies, data concentration, processing & corrections
- Designed for easy cooling

Integration into Systems

Medical Imaging: Positron Emission Tomography

High Energy Physics: Cerenkov detector

Application Example

Positron Emission Tomography (PET)

Philips Digital Photon Counting

Positronen-Emission-Tomography (PET) as an application for DPCs

Positron-Emission-Tomography (PET)

Philips Digital Photon Counting

PET – The Principle

Inject tracer Wait (~60 min) Marker accumulates β^+ annihilation emits two γ under 180° Detect coincident γ with ring detector Acquire ~10⁸ LORs (lines-of-response) Reconstruct 3D

tracer distribution

Philips Digital Photon Counting

PET – The Principle

Philips Digital Photon Counting

PET – The Principle

Time-of-flight (TOF-) PET

Time of Flight PET Systems

\rightarrow ToF: more signal, less noise

(TOF-) PET effect increases with reduced CRT and for larger objects

The accuracy of source position localization along line of response depends on the *coincidence resolving time (CRT)*

 Δx = uncertainty in position along LOR = c · CRT/2, where c is the speed of light.

The TOF benefit is proportional to $D/\Delta x$, where D is the effective patient diameter.

=> The smaller the CRT, the better.

State-of-the-art: CRT \approx 500 ps $\Rightarrow \Delta x \approx$ 7.5 cm Suppose CRT = 100 ps $\Rightarrow \Delta x$ = 1.5 cm

Graph courtesy of D. Schaart, Technical University of Delft, The Netherlands

PHILIPS Time-of-flight (TOF-) PET: IQ improvement

Colon cancer, left upper quadrant peritoneal node

Non-TOF 12/23/2005 Slc 120: Z = -98 TOF (CRT ~650 ps) 12/23/2005 12/23/2005 Slc 120: Z = -98,950 Slice 60: Local Y = -61.056

State-of-the-art clinical PET: coincidence resolving time (CRT) \approx 500 ps Images courtesy of J. Karp, University of Pennsylvania, Philadelphia

114 kg; BMI = 32.2

13.4 mCi; 2 hr post-inj

Prototype PET Scanner

- 10 modules
- 20 cm transverse field-of-view
- 6.6 cm axial field-of-view
- 4x4x22 mm³ LYSO crystals, 1:1 coupling to DPC pixels
 (not intended to be a high resolution scanner)

(not intended to be a high resolution scanner)

Integrated cooling (5 – 10 °C operating temperature)

The challenge: information density

PMT-PET: O(100) channels

Solid state PET: O(10⁴ – 10⁵) channels

Spatial Resolution of Prototype Ring

Mini Deluxe Derenzo Phantom

Heraeus Seminar Bad Honnef, May 23rd, 2013

Spatial Resolution of Prototype Ring

Dimensions of the phantom (in mm)

Heraeus Seminar Bad Honnef, May 23rd, 2013

Philips Digital Photon Counting

Interpreting the Plots

Timing Resolution of Prototype Ring

Transaxial crystal number

- 3.7 MBq ²²Na pointsource
- Coincidence timing resolution (FWHM): 263 ps (≙ 3.9 cm)

PHILIPS Image Quality Overview

4.7 mm

Philips Digital Photon Counting

- Hot rod phantom (70 mm diamater)
- 1h data acquisition (10-15 MBq ¹⁸F)
- Trigger 2 at 7-9°C (internal tile temperature)
- Energy (RE 13% & clustering) and time (TR 390 ps) calibrations applied
- Energy window of [440;660] keV and time window of 3 ns [-1.5;1.5]

Without TOF

PURE/OSEM (0.5 mm voxels), no norm., no decay time, all other corrections applied. Heraeus Seminar Bad Honnef, May 23rd, 2013

Count Rate Performance of Prototype Ring

- 1:1 coupling between scintillator and detector eliminates pile-up
- No degradation of timing, energy and spatial resolution with activity

Moore's law for PDPC

Number of pixels doubled every 3 months, while maintaining performance

Philips Digital Photon Counting

Timing Resolution with Single <u>Short</u> LSO:Ca Crystals

Two coincident detectors:

Timing spectra at different positions of one of the two detectors. The step size is 20 mm. The average coincidence resolving time (CRT) is 123 ps FWHM.

TUDelft Dennis R. Schaart Delft University of Technology

9

D. R. Schaart, G. Borghi, H. T. van Dam, G. J. van der Lei, S. Seifert, V. Tabacchini SNM 2012 Annual Meeting, Miami, FL, 11-Jun-2012

Philips Digital Photon Counting Philips DPC technology: potential in Healthcare

Application Example

Cerenkov Light Detection

Ring Imaging Cerenkov (RICH) Detector

Use Cerenkov radiation for particle identification

Challenge: Detect low number of photons with high timing resolution

Source: Wikipedia₃₁

DPC: First Use for Cerenkov Detection 2011

- PMMA radiator coupled via air gap to two dSiPMs (DLD8K) in coincidence
- Box isolated and temperature-controlled with a TEC to 2 3°C
- · Cooperation between Giessen University (Prof. Düren) and Philips DPC
- First measurements at CERN SPS: σ = 60.7ps

DPC in High Energy Physics: FARICH Detector

FARICH concept

Focusing Aerogel RICH – FARICH

Improves proximity focusing design by reducing radiator thickness contribution into the Cherenkov angle resolution

First test of DPC in High Energy Physics: FARICH Detector @ CERN, June 2012

Main objective:

Proof of concept: full Cherenkov ring detection with DPC array

<u>Timeline:</u>

- Started to envisage: 28/02/12
- Requirements for the FARICH prototype test setup fixed: 30/04/12
- Prototype operational @ Aachen Labs: 03/06/12
- Installed @ CERN: 12/06/12
- Subsequent beam runs for I2 days until 25/06/I2 with smooth setup operation
- Fast prototyping!

FARICH prototype with DPC...

4-layer aerogel

- n_{max} = 1.046
- Thickness 37.5 mm
- Calculated focal distance 200 mm
- Hermetic container with plexiglass window to avoid moisture condensation on aerogel

Square matrix 20x20 cm²

- Sensors: DPC3200-22-44
- 3x3 modules = 6x6 tiles = 24x24 dies = 48x48 pixels in total
- 576 time channels
- 2304 amplitude (position) channels
- 4 levels of FPGA readout: tiles, modules, bus boards, test board

Event-by-event ring fit

Hit selection and ring fit:

- Reject central hits
- Select hits in 4 ns time window
- More than 3 selected hits per event
- 4 parameters fitted: X_{center}, Y_{center}, R, t₀

Number of photoelectrons

S.A. Kononov et al., VCI '13

Ring center adjusted distributions P=6 GeV/c, L=200mm

Philips Digital Photon Counting

PHILIPS

Ring radius distribution fit

Fit function

sum of three gaussians for each particle type with distinct radius plus gaussian background (to account for non-monochromatic particles in the beam)

Free parameters:

- Particle momentum
- Ring radius of rightmost gaussian (other radii derived from Cherenkov law)
- Constants and sigmas of all gaussians

Fixed parameter:

 Effective refractive index n_{eff}=1.038

S.A. Kononov et al., VCI 13

S.A. Kononov et al., VCI '13

Timing resolution for Cherenkov photons

Comparison of timing resolution

Single pixel, 4 x 4 mm²

System, 2304 pixels, 200 x 200mm²

$$\sigma = 61 \text{ ps}$$

 $\sigma = 48 \text{ ps}$

Scalability of timing performance shown

Philips Digital Photon Counting

There are large detectors (not only) @ CERN

Heraeus Seminar Bad Honnef, May 23rd, 2013

Philips Digital Photon Counting

PDPC Technology Evaluation Kit (TEK)

25 kits installed so far

Application Example

Outlook

DPC technology concept beyond PET

- The first target application for dSiPM technology is ToF-PET. (Time-of-Flight Positron Emission Tomography).
- The first DPC sensor family (e.g. DPC 6400-22 / DPC3200-22) may be usable in other applications for scintillation light detection.

How can DPC technology be adapted to other applications?
Pathfinder : design new sensors and modular packaging for new applications using DPC technology

DPC technology concept extension: line sensor

Objective:

Functional test of a line sensor with SPAD technology suitable for LIDAR (Light Detection and Ranging) or 3D scan imaging applications and FLIM (Fluorescence Lifetime Imaging).

Features:

- 72-line sensor is implemented
- 1 line = Cell-Diodes + TDCs
- Each 8-lines has its clock and data channels
- stitch-able design for e.g. a 144 line sensor

8.2 mm

DPC technology concept extension: spectroscopy

Objective:

- Functional test of the line sensor with SPADs for fluorescence detection and spectroscopic applications
- Industrial and Biological Spectroscopy applications
- Confocal Raman Spectroscopy
- Fluorescent lifetime imaging (FLIM) (one programmable TDC is implemented to perform the timing measurement of the first photon hit)

64 x 10 Geiger mode diodes

Simplified Architecture (with example excitation)

Summary/Outlook

- Demonstrated scalability of Philips DPC technology by maintaining intrinsic performance:
 - PET test ring
 - FARICH detector prototype

OUTLOOK/Next:

- Expansion of Scale of technology:
 - detectors with larger number of pixels
 - additional building blocks of scalable architecture
- Improved performance of DPCs (2nd generation):
 - higher PDE (>50%)
 - less dead time (factor 10)
 - better intrinsic timing resolution (factor 2)
 - subpixel (2x2 mm²) readout
- New designs for new applications
 - line- and image sensors
 - LIDAR, FLIM, Spectroscopy

Thank you very much for your attention!

Thanks also to:

PDPC:

Thomas Frach Mezbah Shaber Louis Meesen Ben Zwaans Oliver Muelhens Ralf Schulze Sebastian Reinartz **Ralf Dorscheid** Rik de Gruyter Anja Schmitz York Hämisch

PET

Philips Research:

Andreia Trinidade **Pedro Rodrigues** Andreas Thon Volkmar Schulz Torsten Solf Andre Salomon

FZ Juelich:

Siegfried Jahnke Gerhard Roeb Simone Beer Matthias Streun Marco Dautzenberg

Budker Institute of

FARICH

Nuclear Physics, Novosibirsk A.Yu.Barnyakov Institute of Nuclear M.Yu.Barnyakov **Research RAS, Moscow** V.S.Bobrovnikov A,I.Berlev A.R.Buzykaev D.A.Finogeev V.V.Gulevich T.L. Karavicheva S.A.Kononov E.V.Karpechev E.A.Kravchenko A.B.Kurepin I.A.Kuyanov A.N.Kurepin A.P.Onuchin A.I.Maevskaya I.V.Ovtin Yu.V.Musienko A.A.Talyshev V.I.Razin **Boreskov Institute**, A.I.Reshetin **Novosibirsk** N.S.Topilskaya E.A.Usenko

A.F. Danilyuk

www.philips.com/digitalphotoncounting

carsten.degenhardt@philips.com