Potential & Achievements of CMOS Pixel Sensors for Charged Particle Tracking & Vertexing

Marc Winter – IPHC-CNRS/IN2P3 (Strasbourg)

Heraeus Seminar - Bad Honnef, 24 May 2013

Outline

- General introduction to CMOS Pixel Sensors (CPS)
 - motivations
 CMOS technology
 principle: sensing & read-out
 limits
- State-of-the-Art : MIMOSA-26 : EUDET-BT MIMOSA-28 : STAR-PXL
- New Generation of Subatomic Physics Applications
 - ALICE-ITS & CBM-MVD \rightarrow ILC \Rightarrow new CMOS process : first test results
- Outlook : 2D sensors 3D sensors
- Summary

The Quest for very high Precision Pixel Sensors

- CMOS pixel sensors offer the perspective of "combining the extremes" (ultimately !)
- Several labs develop CMOS pixel sensors : Italy (Univ., INFN), UK (RAL), CERN, Germany (Heidelberg, Bonn, ...), USA, France (IPHC, Saclay), ...
- CMOS Pixel Sensors chosen/envisaged by growing number of subatomic physics experiments :
 - STAR at RHIC/BNL : commissionning
 - ALICE at LHC/CERN : under development
 - CBM at FAIR/GSI : under development
 - ILC : option
 - BESS-3 Inner tracker at BEPC : option
 - ATLAS Tracker upgrade ?
 - Etc.
- Variety of applications besides subatomic physics :

dosimetry, hadrontherapy, γ & β counting, ..., X-Ray imaging (emerging), ...

CMOS Technology

- C.M.O.S. = Complementary Metal-Oxide-Semiconductor
- CMOS pixel sensors exploit the fabrication processes used in industry for mass production of integrated circuits :
 - * micro-processors, micro-controler, RAM, ...
 - * cell phones & cameras, lap tops, cars, ...
- CMOS fabrication mode :
 - * μ circuit lithography on a substrate
 - * proceeds through reticules ($\sim 2x2 \rightarrow 2x3 \text{ cm}^2$) organised in wafers (typically 8")

Main Features of CMOS Sensors

- P-type low-resistivity (O(10) $\Omega \cdot cm$) Si hosting n-type "charge collectors"
 - signal created in epitaxial layer (low doping):

Q \sim 70–80 e-h / $\mu m \mapsto$ signal \lesssim 1000 e $^-$

- charge sensing through n-well/p-epi junction
- excess carriers propagate (thermally) to diode with help of reflection on boundaries with p-wells and substrate (high doping)
 - \Rightarrow continuous signal sensing (no dead time)

- Prominent advantages of CMOS sensors :
 - \diamond granularity : pixels of \lesssim 10×10 $\mu m^2 \Rightarrow$ high spatial resolution (e.g. \lesssim 1 μm if needed)
 - \diamond low material budget : sensitive volume \gtrsim 10 20 μm \Rightarrow total thickness \lesssim 50 μm
 - ♦ signal processing μ circuits integrated in the sensors \Rightarrow compacity, high data throughput, flexibility, etc.
 - \diamond industrial mass production \Rightarrow cost, industrial reliability, fabrication duration, multi-project run frequency,

technology evolution, ...

 \diamond operating conditions : from $\ll 0^{\circ}$ C to $\gtrsim 30-40^{\circ}$ C

hightarrow hightarrow Thinning down to \sim 30–50 μm permitted

Overview of Rolling Shutter Architecture

- Sensor organisation :
 - * Signal sensing and analog processing in pixel array
 - * Mixed and Digital circuitry integrated in chip periphery
 - * Read-out in rolling shutter mode

(pixels grouped in columns read-out in //)

- \Rightarrow trend : increase functionnalities inside pixels
- Main consequences :
 - * Read-out speed :
 - \equiv integration time
 - \equiv nb of pixels \times pixel read-out time (O(100 ns))
 - *** Power consumption :**

limited inside the pixel array to the row(s) being read c

* Material budget :

peripheral band(s) for mixed+digital circuitry, insensitive to impinging particles

 $\hookrightarrow~\sim$ 10 % of chip surface

* Time stamp :

each row encompasses a specific time intervalle \Rightarrow adapt (\equiv exploit with) track reconstruction code

State of the Art : MIMOSA-26 for EUDET-BT

State-of-the-Art: MIMOSA-28 for the STAR-PXL

- Main characteristics of ULTIMATE (\equiv MIMOSA-28):
 - * 0.35 μm process with high-resistivity epitaxial layer
 - * column // architecture with in-pixel cDS & amplification
 - * end-of-column discrimination & binary charge encoding
 - * on-chip zero-suppression
 - st active area: 960 colums of 928 pixels (19.9imes19.2 mm 2)
 - st pitch: 20.7 $\mu m
 ightarrow$ \sim 0.9 million pixels
 - \hookrightarrow charge sharing $\Rightarrow~\sigma_{sp}\gtrsim$ 3.5 μm
 - * JTAG programmable
 - * t $_{r.o.}$ \lesssim 200 μs (\sim 5 \times 10 3 frames/s) \Rightarrow suited to >10 6 part./cm 2 /s
 - * 2 outputs at 160 MHz
 - $* \lesssim$ 150 mW/cm 2 power consumption
- $\vartriangleright \vartriangleright \lor \lor$ Sensors fully validated : (50 μm thin)
 - * N \lesssim 15 e $^-$ ENC at 30-35 $^\circ C$
 - * ϵ_{det} , fake & σ_{sp} as expected
 - $-\infty$ Rad. tol. validated (3.10¹² n_{eq}/cm² & 150 kRad at 30°C)
 - $-\infty$ All specifications are met \Rightarrow detector construction under way (40 ladders)
- ▷▷▷ 1st step: Commissioning of 3/10 of detector started at RHIC with pp collisions on May 9th, 2013

Mimosa 28 - epi 20 um - NC

Technology Limitations and Industrial Trends

- Thin sensitive volume
 - \Rightarrow impact on signal magnitude (mV !) \Rightarrow very low noise FEE required
 - \triangleright tendency : \gtrsim 40 μm thick epitaxy or low doping substrate
- Sensitive volume only partly depleted
 - \Rightarrow negative impact on radiation tolerance & speed but positive on σ_{sp} (charge spread)
 - \triangleright tendency : high-resistivity epitaxial layer \Rightarrow improved radiation tolerance (SNR)
- Commercial fabrication
 - \Rightarrow fabrication parametres (doping profile \rightarrow epitaxial layer, number of metal layers, etc.) not optimal for charged particle detection *(optimised for markets)*:
 - * real potential of CMOS pixel sensors not exploited (yet !)
 - * choice of process for HEP often driven by epitaxial layer characteristics (governs signal), at the expense of the FEE circuitry parametres (feature size, nb of Metal Layers)
 - \triangleright tendency : CMOS process with feature size \leq 0.18 μm on high-res., up to 50 μm thick, epitaxy
- Use of P-MOS transistors inside pixel array restricted in most processes
 - \Rightarrow limited signal processing functionnalities inside (small) pixels (most performed on sensor periphery)
 - ▷ tendency : buried P-well techno. \Rightarrow allows use of P-MOS transistors (watch charge coll. eff. !)

Towards Higher Read-Out Speed and Radiation Tolerance

• Next generation of experiments calls for improved sensor performances :

Expt-System	σ_t	σ_{sp}	TID	Fluence	
STAR-PXL (30°C)	\lesssim 200 μs	\sim 5 μm	150 kRad	3·10 12 n $_{eq}$ /cm 2	\checkmark
			↓?	₩?	
$30^{\circ}C \rightarrow \ll 0^{\circ}C$	10-30 μs	\sim 3-5 μm	$1 \rightarrowtail 10 \text{ MRad}$	$10^{13} ightarrow 10^{14} \ {\sf n}_{eq}/{ m cm}^2$	

- Main improvements required to comply with forthcoming experiments' specifications :
 - aim for higher epitaxial layer resistivity

• reduce nb(pixels) / read-out unit (column)

- aim for smaller feature size process
- & more parallelised read-out
- How to accelerate the pixel read-out :
 - elongated pixels ⇒ less pixels /col. & in-pixel discri. ⇒ 3-8 faster r.o.
 - read out simultaneously 2 or 4 rows \Rightarrow 2-4 faster r.o./side
 - \circ subdivide pixel area in 4-8 sub-arrays read out in // \Rightarrow 2-4 faster r.o./side
 - conservative step: 2 discri./col. end (22 μm wide) ⇒ simult. 2 row r.o.
 - remain inside virtuous circle: spatial resol., power, flex mat. budget, ...
 - \Rightarrow 0.18 μm process needed instead of currently used 0.35 μm process

Applications of CPS : ALICE-ITS Upgrade

- ITS upgrade : scheduled for "2017-18" LHC long shutdown
 - * exploits space left by replacement of beam pipe
 with small radius (19 mm) section
 - * addition of L0 at \sim 22 mm radius to present ITS & replacement of (at least) inner part of present ITS
 - * 2 geometry options considered (CDR) :
 - $\diamond\,$ 7 layers with pixels (\gtrsim 9 m 2 , O(10 $^{10})$ pixels !)
 - $\diamond\,$ 3 inner layers with pixels & 4 outer layers with μ strips
- Differences w.r.t. ULTIMATE/MIMOSA-28 :

 $% ~ 1 \text{ MRad & } 10^{13} \text{n}_{eq}/\text{cm}^2 \text{ at T} = 30^{\circ}\text{C} \text{ (target values)}$ $↔ 0.18 µm 4-\text{well HR-epi techno. (instead of 0.35 µm 2-well hR-epi)$ $% ~ 1 \times 3 \text{ cm}^2 \text{ large sensitive area (instead of 2 × 2 cm^2)}$ % parallelised rolling-shutter (pot. in-pixel discri.) → ~ 10-30 µs% 1 or 2 output pairs at ≥ 300 MHz (instead of 1 output pair at 160 MHz)

- $*~\sigma_{sp}\sim$ 4 μm ; ladders \sim 0.3 % X $_0$
- $\rhd \rhd \rhd$ Conceptual Design Report \rightarrowtail approved by LHCC in Sept. 2012
 - \hookrightarrow may include Muon Forward Tracker (MFT) using CPS
- $\rhd \rhd \rhd$ Technical Design Report to be delivered in Q3/2013

Charge Sensing Properties of 0.18 μm Process

• MIMOSA-32 lab tests (55 Fe source) of pixel matrix with analog output

- * Read-out time of each sub-matrix = 32 μs
- * Observed CCE (20imes20 μm^2 pixels) :
 - \circ seed pixel : \sim 40–50 % \triangleright \triangleright \triangleright
 - \circ 2×2 pixel cluster : nearly 100 % \triangleright \triangleright \triangleright
 - \Rightarrow confirms Epi. layer 1-5 $k\Omega\cdot cm$
 - No parasitic charge coll. seen with Deep P-well
 - $_\circ\,$ CCE of 20imes40 μm^2 pixels
 - $\hookrightarrow\,$ seed \sim 30 %; with 1st crown \sim 70-80 %
- * Noise \leq 20 e⁻ENC at 20°C, unchanged at 35°C
- \ast Irradiation: 0.4/1/3 MRad \rightarrow \sim no effect up to 35 $^{\circ}$ C (tbc !)

Radiation	2	$20 imes 20\mu m$	20 $ imes$ 40 μm^2		
Load	2T	3T	Deep P	1D-3T	2D-3T
0	3.7	3.3	3.2	4.0	2.8
	(1.4)	(1.3)	(1.2)	(1.9)	(1.2)
1 MRad and	3.0	2.7	2.6	2.7	2.4
10 $^{13}n_{eq}$ /cm 2	(1.2)	(1.1)	(1.1)	(1.5)	(1.2)

* Cluster multiplicity for 60 & 120 GeV charged particles

hmult SN

Mean

RMS

14

3211

3.932

1.798

Beam Test Results of 0.18 μm Process Pixels

- DATA COLLECTED ON SPS/T4-H6 FROM NOV. 19TH TO 28TH: 80 & 120 GEV PARTICLES (& 20 GEV)
 - $*~\sim$ 25,000 tracks reconstructed in MIMOSA-32ter prototype $\equiv~$ arrays of pixels with in-pixel ampli. & clamping
 - * Test results presented at NSS/MIC-12, LCWS-12, RESMDD-12, VCI-13
- $20 imes 20 \mu m^2$ pixels with N-&P-MOS ampli with Feedback Loop ended with FW biased diode:

Radiation load	0 + 0		$3\cdot 10^{12} \ {\sf n}_{eq}$ /cm 2 + 300 kRad		10 13 n $_{eq}$ /cm 2 + 1 MRad	
Coolant temperature	15°C	30°C	20°C	30°C	20 [°] C	30°C
SNR	30.4 ± 0.7	28.3 ± 0.6	22.0 ± 0.3	23.0 ± 0.3	21.1 ± 0.3	19.5 \pm 0.2
Detection Efficiency	99.86 ± 0.14 %	99.59 ± 0.14 %	99.63 ± 0.13 %	99.49 \pm 0.16 %	99.34 ± 0.19 %	99.35 \pm 0.13 %

• SAME PIXEL : SNR(SEED), Q(SEED), N VS T (15–30°C) & RADIATION LOAD (1 MRAD \oplus 10¹³N_{eq}/cm²)

Spatial Resolution

- Beam test (analog) data used to simulate binary charge encoding :
 - * Apply common SNR cut on all pixels using <N>
 - \hookrightarrow simulate effect of final sensor discriminators
 - * Evaluate single point resolution (charge sharing) and detection efficiency vs discriminator threshold for 20x20 μm^2 pixels and 20x40 μm^2 staggered pixels (1 sensing diode)
- Comparison of 0.18 μm technology (> 1 $k\Omega \cdot cm$) with 0.35 μm technology (< 1 $k\Omega \cdot cm$) (pitch values: 20.0 μm and 20.7 μm)
- $\sigma^{bin}_{sp}\simeq$ 3.2 \pm 0.1 μm (20x20 μm^2) AND \simeq 5.4 \pm 0.1 μm (20x40 μm^2)

Perspectives: Fast 2D sensors

- Evolve towards feature size of O(100) nm feature size :
 - * μ circuits: smaller transistors, quad-well, more Metal L., ... * sensing: (fully) depl
- **Benefits :** * faster read-out \Rightarrow improved time resolution
 - * higher μ circuit density \Rightarrow higher data reduction capability
 - * thinner gates, depletion \Rightarrow improved radiation tolerance
 - * lower V_T \Rightarrow reduced power
- On-going R&D (examples) :
 - * APSEL sensor (130 nm) for future Vx Det. :
 - in-pixel pre-amp + shaping + discri. $\triangleright \triangleright \triangleright$
 - sensing through buried n-well
 - о shallow n-well hosting P-MOS T
 - * *TJSC* sensors (180 nm) for ALICE-ITS upgrade :
 - \circ high-resistivity, 18-40 μm thick, epitaxy ho
 ho
 ho
 ho
 - о deep n-wells hosting P-моs T
- Main limitations :
 - $_{*}$ VDSM technologies not optimised for analog μ circuits (low V !) \Rightarrow reliability
 - * conflict between speed (e.g. 10 ns) and granularity (e.g. 20imes20 μm^2 pixels)
 - ⇒ Natural trend : chip stacking

* sensing: (fully) depleted 20–40 μm sensitive vol., ...

Using 3DIT to reach Ultimate CMOS Sensor Performances

- 3D Integration Technologies allow integrating high density signal processing μ circuits inside **small** pixels by stacking (\sim 10 μ m) thin tiers interconnected at pixel level
- 3DIT are expected to be particularly beneficial for (small pixel) CMOS sensors :
 - * combine different fab. processes \Rightarrow chose best one for each tier/functionnality
 - * alleviate constraints on peripheral circuitry and on transistor type inside pixel, etc.
- Split signal collection and processing functionnalities :
 - * Tier-1: charge sensing
 - * Tier-2: analog-mixed μ circuits
 - * Tier-3: digital μ circuits

Conventional MAPS 4 Pixel Layout 3D 4 Pixel Layout

- The path to nominal exploitation of CMOS pixel potential :
 - $_{*}$ fully depleted \sim 20–40 μm thick epitaxy \Rightarrow \lesssim 5 ns coll. time, rad. hardness > Hybrid Pix. Sensors ???
 - * FEE with \leq 10 ns time resolution \rightarrow solution for CLIC & HL-LHC specifications ???
 - * 2 tiers may be enough in most cases (e.g. 180 nm \oplus 65 nm process)
 - \Rightarrow significant connection process simplification (explored in EU project AIDA)

SUMMARY

- CMOS sensor technology has become mature for high performance vertexing and tracking
 - * most relevant for specifications governed by granularity, material budget, power consumption, cost, ...
 - * excellent performance record with beam telescopes (e.g. EUDET project)
 - * 1st vertex detector experience will be gained with STAR-PXL, having started data taking May 9th, 2013
 - * numerous spin-off applications : hadrontherapy (FIRST exp., p-imager), dosimetry, ...
 - * new generation of sensors under development for experiments > 2015 (including trackers & calo.)

 \hookrightarrow ALICE-ITS upgrade, CBM-MVD (see talk of M. Deveaux), ..., ILC VD (?), ...

- Recently accessible technologies tend to allow coming quite close to full potential of CPS :
 - (> 2 k·cm, up to \sim 50 μm thick, epitaxial layer with 4-well, O(100) μm feature size processes)
 - \hookrightarrow applications to X-Ray imaging, TraCal, ...
- Evolution of industry opens the door to 2 "natural" steps towards "ultimate" CPS performances :
 - $_{*}$ fast 2D sensors fab. in VDSM CMOS techno. may allow \lesssim O(1) μs , \gg 10 MRad, > 10 14 n $_{eq}$ /cm 2
 - ★ 3D chips are expected to "exhaust" the technology potential, but there is still a rather long way to go

 → 1st step : 2-tier sensors

\Rightarrow may lead to fast & rad. hard devices suited to HL-LHC & CLIC

Examples of Applications in Subatomic Physics

- Beam telescopes :
 - $\ast\,$ EUDET (FP-6 / 2006-2010) : 6 planes with 1 $\times 2~\text{cm}^2$ sensors
 - $_{\ast}\,$ AIDA (FP-7 / 2011-2015) : \geq 3 planes with 4 \times 6 cm 2 sensors
- Vertex detectors :
 - * STAR-PXL at RHIC : 2 layers
 - * CBM-MVD at FAIR/GSI : 2-3 stations
 - * ALICE-ITS at LHC : 3 inner layers
 - * FIRST at GSI (p/C PMMA x-sec) : 4 stations
 - * option for ILD-VTX at ILC : 3 double-layers
- Trackers ("large pitch") :
 - * BES-III at BEPC
 - $_{*}$ ALICE-ITS at LHC : 4 outer layers (\lesssim 10 m^{2} !)
 - * in general : trackers surrounding vertex detectors
- EM calorimetres : SiW calorimetre
 - * generic R&D on **T**RA**C**AL

