Overview of in-ice radio simulations for neutrino detection

Christian Glaser

LIPPSALA

UNIVERSITET

Christian Glaser, CORSIKA8 Workshop, July 2022 christian.glaser@physics.uu.se

Going to ultra-high energies

- Low interaction cross section of neutrinos
- Very low neutrino flux
- →Very large volumes needed for reasonable rates
- Solution: radio technique
 - Large volumes at no cost: Antarctic ice
 - Ice transparent to radio waves (L ~ 1km)
 - A single radio station has 1km³ effective volume (comparable to IceCube)

Experimental Landscape

ARIANNA test bed

• 12 shallow stations at Moore's Bay + South Pole

ARA

• 5x 200m deep stations at South Pole

Radio technology developed and verified; hardware proven reliable

RNO-G

- 35 detector stations in Greenland
- first deployment summer 2021

IceCube-Gen2

- 300+ detector stations at South Pole
- hybrid array of deep and shallow stations

S. Hallmann et al., PoS(ICRC2021)1183

Radio Emission of Particle Showers

⁴ Christian Glaser, CORSIKA8 Workshop, July 2022 christian.glaser@physics.uu.se

NuRadioMC Overview

C. Glaser et al., EPJ-C 79: 464 (2019) C. Glaser et al., EPC-C 80, 77 (2020) D. Garcia et al, Rev. D **102** 083011 (2020)

- From neutrino interaction to detector output
- Modular python code (C++ modules for time critical operations)
- Open source: github.com/nu-radio/NuRadioMC
- Community wide effort, started in 2018, now 20+ contributors
- More flexible, faster, more precise modelling of physics

October 3, 2021 – No	Period: 1 month -				
Overview					
12 Active Pull Requests		10 Active Issues			
ှိ- 8 Merged Pull Requests	រ៉ ា 4 Open Pull Requests	⊘ 1 Closed Issue	⊙ 9 New Issues		
Excluding merges, 13 authors have pushed 6 commits to develop and 94 commits to all branches. On develop, 14 files have changed and there have been 3,314 additions and 31 deletions .					

5 Christian Glaser, CORSIKA8 Workshop, July 2022 christian.glaser@physics.uu.se

NuRadioMC Overview

- From neutrino interaction to detector output
- Modular python code (C++ modules for time critical operations)
- Open source: github.com/nu-radio/NuRadioMC
- Community wide effort, started in 2018, now 20+ contributors
- More flexible, faster, more precise modelling of physics
- Accuracy:

6

- Extensive comparison with existing codes: agreement within 10% for the same physics settings
- automatic testing of relevant components
- review of every code addition

C. Glaser et al., EPJ-C 79: 464 (2019) C. Glaser et al., EPC-C 80, 77 (2020) D. Garcia et al, Rev. D **102** 083011 (2020)

build succeeded 3 days ago in 42m 3s		Q			තු	
>	ø	Single event test (Moore's Bay)		ź	24s	
>	Ø	Single event test (ARZ)		1m	7s	
>	Ø	Signal generation test		:	13s	
>	Ø	Signal propagation tests		5m 3	38s	
>	Ø	Test Veff example				30s
>	Ø	Test calibration pulser example		6m 3	31s	
>	Ø	Test webinar examples		3m	5s	
>	Ø	Veff test		5m 4	45s	
>	Ø	Veff test with noise and phased array		5m 3	38s	
>	Ø	Atmospheric Aeff test 5m		5m	6s	

Signal Propagation

7

Overview: Radio detection of neutrinos

Overview: Radio detection of neutrinos

9

Current state-of-the-art in calculating radio emission

- Microscopic shower simulations in homogeneous ice (using ZHAireS)
- Semi-analytic formalism to calculate emission for arbitrary charge-excess profiles
 - Agrees within 3% with full MC simulation Alvarez-Muñiz et al., Phys. Rev. D 101, 083005

Current state-of-the-art in calculating radio emission

- Microscopic shower simulations in homogeneous ice (using ZHAireS)
- Semi-analytic formalism to calculate emission for arbitrary charge-excess profiles
 - Agrees within 3% with full MC simulation
 Alvarez-Muñiz et al., Phys. Rev. D 101, 083005
 - Precise calculation of LPM showers
- Full end-to-end (from neutrino interaction to detector) simulation codes exist
 - e.g. NuRadioMC

C. Glaser et al., Eur. Phys. J. C (2020) 80:77

 So far: Calculations assumed medium with constant index of refraction

11 Christian Glaser, CORSIKA8 Workshop, July 2022 christian.glaser@physics.uu.se

Goal 1: Microscopic simulation in inhomogeneous medium

Energy losses of high-energy muon/tau

16

Additional Propagation Effects: Birefringence

18 Christian Glaser, CORSIKA8 Workshop, July 2022 christian.glaser@physics.uu.se

-> propagation time between *shower track* and *receiver* not sufficient

any ideas how to model this effect time efficient?

N. Heyer, C. Glaser arXiv:<u>2205.06169</u>

Pulse Propagation (\bot)

19 Christian Glaser, CORSIKA8 Workshop, July 2022 christian.glaser@physics.uu.se

Pulse Propagation (\perp , final state)

20 Christian Glaser, CORSIKA8 Workshop, July 2022 christian.glaser@physics.uu.se

N. Heyer, C. Glaser arXiv:<u>2205.06169</u>

Pulse Propagation (∡)

21 Christian Glaser, CORSIKA8 Workshop, July 2022 christian.glaser@physics.uu.se

Pulse Propagation (∡, final state)

22 Christian Glaser, CORSIKA8 Workshop, July 2022 christian.glaser@physics.uu.se

Additional Propagation Effects: Everything

- Complex ice properties can lead to propagation effects beyond ray tracing
- Solvable via Finite-difference time-domain (FDTD)
 - solves Maxwell's equation with discretized space / time
 - BUT very time consuming (100k core hours for single geometry)
 - feasible once for every antenna position/depth
 - use reciprocity approach

Maximum VPol E-field Magnitude

23 Christian Glaser, CORSIKA8 Workshop, July 2022 christian.glaser@physics.uu.se

see e.g. C. Deaconu arXiv:1805.12576

Calculation of Propagation Effects via Reciprocity current approach using reciprocity

"Particle-centric" solution: moving particle represents a current, use as source term in Maxwell's equations, compute field & signal

Incur overhead if the same detector geometry is exposed to many different particle trajectories!

Repeat (unnecessarily!) the propagation of the radiation through the environment

24 Christian Glaser, CORSIKA8 Workshop, July 2022 christian.glaser@physics.uu.se

"Weighting field": Green's function for detector signal

Encodes information about detector geometry & environment; reciprocity defines concrete algorithm to compute it

Fully general, no approximations

holds exactly for all linear, anisotropic materials; approximately for nonlinear, anisotropic materials

slides by Philipp Windischhofer

more info: W. Riegler, P. Windischhofer, NIM-A 980 164471 (2020)

Summary: Simulation of InIce Radio Emission

- What we already have:
 - microscopic simulation of radio emission in dense homogeneous media
 - End-to-end MC code (NuRadioMC) for fast simulation
- What we need:
 - 1. Simulation in inhomogeneous media (first step n(z) gradient)
 - can be solved by adding ray tracing to radio module
 - 2. Complex geometries (transition of boundaries)
 - 3. Second-order propagation effects, e.g. birefringence
 - propagation time between *shower track* and *receiver* is not sufficient
 - can potentially be solved using an reciprocity approach

UPPSALA

UNIVERSITET

Backup

26 Christian Glaser, CORSIKA8 Workshop, July 2022 christian.glaser@physics.uu.se

Hard requirements

- Support of dense media such as ice, water, lunar regolith, ...
 - Do we need to implement additional interactions that are only relevant for dense media? E.g. tau propagation, dE/dX for muons, LPM effect?

- Does the medium need to couple back to simulation parameters such as low-energy cutoffs?
- Support of arbitrary medium configurations, including transitions from air to dense media or dense media to vacuum (at least medium properties as a function of height, better arbitrary 3D medium configurations)
- Medium model including refractive index profile, and possibility to do ray-tracing on the basis of this in both air and dense media
 - Additional properties needed? Humidity? Temperature?
- Direct interface to the tracking of each particle in the shower simulation with bi-directional communication
 - E.g. readjust step size in particle tracking
 - E.g. readjust thinning level of important/unimportant particles or even throw away particles that are not relevant for radio emission
 - E.g. modify particle properties due to atmospheric electric fields
- Simple interface to inject arbitrary particles (including their energy, momentum) and possibly specify their interactions to start a shower ("the world's dumbest event generator")
- Global coordinate system that supports curvature of Earth (anyway planned, adaption from Offline)

Very useful features

- Inspect particle cascade at arbitrary observation planes, e.g. to calculate drift velocities on the fly,
 ...
- In general a very flexible adjustment of thinning
 - First interactions are very important -> low thinning
 - Medium energy interactions are less important -> high thinning
 - Low energy interactions are important to correctly model coherence -> low thinning
- Possibility to simulate air showers induced by upgoing neutrinos (from the Earth, mountains, ...)

Wishlist

- Retain information on particles at rest -> ionization in medium (relevant for RADAR reflections, low-frequency radio emission)
- Simulate 'very' low energy particles (keV scale) and interaction with atmospheric electric fields relevant for thunderstorm studies - in general allow interfacing of additional interaction models for particles/energy ranges not treated by existing models
- Simulate particle oscillation (e.g. neutrino oscillation or strong oscillations such as K-short -> Klong). I.e., in general provide the possibility to change the type of the particle during propagation; this could be implemented in form of a propagation modules.
- Save state of simulation at any stage (e.g. a specific height/atmospheric depth). Then be able to
 resume simulation with e.g. modified density profile or just with different random seeds

Implementation of Radio Modules

- Radio part should be modular in itself, i.e. decouple
 - Emission calculation (e.g. ZHS vs. endpoints)
 - Signal propagation
 - Straight lines (for air showers/constant density)
 - Ray tracing
 - Full FDTD propagation?
 - Receive module
 - Add emission from all particle tracks (as right now in CoREAS)
 - Keep track of incoming direction of signal -> efield in angular bins
 - On-the-fly convolving with directional antenna response