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Going to ultra-high energies

§ Low interaction cross section of neutrinos

§ Very low neutrino flux

→Very large volumes needed for reasonable 
rates

§ Solution: radio technique
§ Large volumes at no cost: Antarctic ice
§ Ice transparent to radio waves (L ~ 1km)
§ A single radio station has 1km³ effective 

volume (comparable to IceCube)
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Experimental Landscape
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ARIANNA test bed
• 12 shallow stations at Moore’s Bay + South Pole

ARA
• 5x 200m deep stations at South Pole

IceCube-Gen2
• 300+ detector stations at 

South Pole
• hybrid array of deep and 

shallow stations

Radio technology developed and 
verified; hardware proven reliable

now

future

past

RNO-G
• 35 detector stations in Greenland
• first deployment summer 2021

S. Hallmann et al., PoS(ICRC2021)1183

https://doi.org/10.22323/1.395.1183
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Radio Emission of Particle Showers

§ Askaryan effect: Negative charge excess in the shower front
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NuRadioMC Overview
§ From neutrino interaction to detector output
§ Modular python code (C++ modules for time critical operations)
§ Open source: github.com/nu-radio/NuRadioMC
§ Community wide effort, started in 2018, now 20+ contributors
§ More flexible, faster, more precise modelling of physics
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C. Glaser et al., EPJ-C 79: 464 (2019)
C. Glaser et al., EPC-C 80, 77 (2020)

D. Garcia et al, Rev. D 102 083011 (2020)
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NuRadioMC Overview
§ From neutrino interaction to detector output
§ Modular python code (C++ modules for time critical operations)
§ Open source: github.com/nu-radio/NuRadioMC
§ Community wide effort, started in 2018, now 20+ contributors
§ More flexible, faster, more precise modelling of physics
§ Accuracy: 

§ Extensive comparison with existing codes:
agreement within 10% for the same physics settings

§ automatic testing of relevant components
§ review of every code addition
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C. Glaser et al., EPJ-C 79: 464 (2019)
C. Glaser et al., EPC-C 80, 77 (2020)

D. Garcia et al, Rev. D 102 083011 (2020)
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Signal Propagation
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Overview: Radio detection of neutrinos
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Overview: Radio detection of neutrinos
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Current state-of-the-art in calculating radio emission

§ Microscopic shower simulations in 
homogeneous ice (using ZHAireS)

§ Semi-analytic formalism to calculate emission 
for arbitrary charge-excess profiles
§ Agrees within 3% with full MC simulation
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Alvarez-Muñiz et al., Phys. Rev. D 101, 083005
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Current state-of-the-art in calculating radio emission

§ Microscopic shower simulations in 
homogeneous ice (using ZHAireS)

§ Semi-analytic formalism to calculate emission 
for arbitrary charge-excess profiles
§ Agrees within 3% with full MC simulation

§ Precise calculation of LPM showers

§ Full end-to-end (from neutrino interaction to 
detector) simulation codes exist
§ e.g. NuRadioMC

§ So far: Calculations assumed medium with 
constant index of refraction
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Alvarez-Muñiz et al., Phys. Rev. D 101, 083005

C. Glaser et al., Eur. Phys. J. C (2020) 80:77

Goal 1: Microscopic simulation in inhomogeneous medium
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Energy losses of high-energy muon/tau

§ 1 EeV tau propagating through ice

§ Simulated using PROPOSAL

§ Stochastic energy losses > 1014 eV shown

12
tau

many low energy showers 
might interfere constructively

D. Garcia et al, Rev. D 102 083011 (2020)
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Additional Geometries

1. Air shower radio emission
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1. Air shower radio emission
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Additional Geometries

-> see Uzairs talk
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1. Air shower radio emission

2. High-energy muons
a. signature similar to neutrino signal but mostly low energy
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Additional Geometries
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1. Air shower radio emission

2. High-energy muons

3. Shower cores
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Additional Geometries

-> see Simons talk
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1. Air shower radio emission

2. High-energy muons

3. Shower cores

17

Additional Geometries
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Additional Propagation Effects: Birefringence

§ Index–of-refraction different for different 
signal polarizations

§ Complex interference after propagation

18 -> propagation time between shower track and receiver not sufficient

any ideas how to model this effect time efficient? 

N. Heyer, C. Glaser arXiv:2205.06169

https://arxiv.org/abs/2205.06169
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Pulse Propagation (⊥)

ARENA 202219

N. Heyer, C. Glaser arXiv:2205.06169

https://arxiv.org/abs/2205.06169
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Pulse Propagation (⊥, final state)

ARENA 202220

N. Heyer, C. Glaser arXiv:2205.06169

https://arxiv.org/abs/2205.06169
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Pulse Propagation (∡)

ARENA 202221

N. Heyer, C. Glaser arXiv:2205.06169

https://arxiv.org/abs/2205.06169
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Pulse Propagation (∡, final state)

ARENA 202222

N. Heyer, C. Glaser arXiv:2205.06169

https://arxiv.org/abs/2205.06169
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Additional Propagation Effects: Everything

§ Complex ice properties can lead to 
propagation effects beyond ray tracing

§ Solvable via Finite-difference time-domain 
(FDTD) 
§ solves Maxwell’s equation with discretized 

space / time
§ BUT very time consuming (100k core hours

for single geometry)
§ feasible once for every antenna 

position/depth
§ use reciprocity approach

23 see e.g. C. Deaconu arXiv:1805.12576
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Calculation of Propagation Effects via Reciprocity

24
slides by Philipp Windischhofer

current approach using reciprocity

more info: W. Riegler, P. Windischhofer, NIM-A 980 164471 (2020)

only calculated once per medium and antenna
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Summary: Simulation of InIce Radio Emission

§ What we already have:
§ microscopic simulation of radio emission in dense homogeneous media
§ End-to-end MC code (NuRadioMC) for fast simulation

§ What we need:
1. Simulation in inhomogeneous media (first step n(z) gradient)

§ can be solved by adding ray tracing to radio module
2. Complex geometries (transition of boundaries)
3. Second-order propagation effects, e.g. birefringence

§ propagation time between shower track and receiver is not sufficient
§ can potentially be solved using an reciprocity approach
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Backup
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Hard requirements

§ Support of dense media such as ice, water, lunar regolith, ...
§ Do we need to implement additional interactions that are only relevant for dense media? E.g. tau propagation, 

dE/dX for muons, LPM effect?
§ Does the medium need to couple back to simulation parameters such as low-energy cutoffs?

§ Support of arbitrary medium configurations, including transitions from air to dense media or dense media 
to vacuum (at least medium properties as a function of height, better arbitrary 3D medium configurations)

§ Medium model including refractive index profile, and possibility to do ray-tracing on the basis of this in 
both air and dense media

§ Additional properties needed? Humidity? Temperature?

§ Direct interface to the tracking of each particle in the shower simulation with bi-directional communication
§ E.g. readjust step size in particle tracking
§ E.g. readjust thinning level of important/unimportant particles or even throw away particles that are not relevant 

for radio emission
§ E.g. modify particle properties due to atmospheric electric fields

§ Simple interface to inject arbitrary particles (including their energy, momentum) and possibly specify their 
interactions to start a shower (“the world’s dumbest event generator”)

§ Global coordinate system that supports curvature of Earth (anyway planned, adaption from Offline)

27

from ARENA2018 brain storming meeting



Christian Glaser, CORSIKA8 Workshop, July 2022
christian.glaser@physics.uu.se

Very useful features

§ Inspect particle cascade at arbitrary observation planes, e.g. to calculate drift velocities on the fly, 
...

§ In general a very flexible adjustment of thinning
§ First interactions are very important -> low thinning
§ Medium energy interactions are less important -> high thinning
§ Low energy interactions are important to correctly model coherence -> low thinning

§ Possibility to simulate air showers induced by upgoing neutrinos (from the Earth, mountains, …)

28

from ARENA2018 brain storming meeting



Christian Glaser, CORSIKA8 Workshop, July 2022
christian.glaser@physics.uu.se

Wishlist

§ Retain information on particles at rest -> ionization in medium (relevant for RADAR reflections, 
low-frequency radio emission)

§ Simulate ‘very’ low energy particles (keV scale) and interaction with atmospheric electric fields 
relevant for thunderstorm studies - in general allow interfacing of additional interaction models 
for particles/energy ranges not treated by existing models

§ Simulate particle oscillation (e.g. neutrino oscillation or strong oscillations such as K-short -> K-
long). I.e., in general provide the possibility to change the type of the particle during propagation; 
this could be implemented in form of a propagation modules.

§ Save state of simulation at any stage (e.g. a specific height/atmospheric depth). Then be able to 
resume simulation with e.g. modified density profile or just with different random seeds

29

from ARENA2018 brain storming meeting
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Implementation of Radio Modules

§ Radio part should be modular in itself, i.e. decouple
§ Emission calculation (e.g. ZHS vs. endpoints)
§ Signal propagation

§ Straight lines (for air showers/constant density)
§ Ray tracing
§ Full FDTD propagation?

§ Receive module
§ Add emission from all particle tracks (as right now in CoREAS)
§ Keep track of incoming direction of signal -> efield in angular bins
§ On-the-fly convolving with directional antenna response

30

from ARENA2018 brain storming meeting


