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Introduction
● Radio emissions from cosmic ray showers serve as an 

essential background signal for in-ice radio detectors in 
the polar regions. 
– Can also serve as calibration sources due to their relatively 

large observed flux. 

● Thus, we have adapted CoREAS for simulating in-air 
radio emissions in in-ice antennas using exponential 
refractive index profiles of air and ice.

● Analytic raytracing expressions are used to calculate the 
relevant parameters for the curved ray paths.  

● Since analytic raytracing is slow, interpolation is used with 
pre-tabulated raytrace values to calculate raytracing 
parameters for all the particles in the shower.
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Raytracing in Polar Ice
● Rays are refracted owing to the 

depth-dependent density, and 
therefore index of refraction profile.

● For any given a transmitter and 
receiver geometry I have an analytic 
solution that traces out the rays in 
ice and air.

● The refractive index profile for SP 
ice:

Ray paths for a source at a depth of 
200 m. The bending causes the 
formation of ‘shadow zones’.

Shadow 
zone

, here A=1.78, B=-0.43, C=-0.0132 1/m
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Air Refractive Index Profile
● Get the GDAS atmosphere 

file for a given set of GPS 
coordinates.
– In this case its for a location 

close to South Pole.

● Get the five layer refractive 
index model using the 
GDAS file.

A, B and C values for the five 
exponential refractive index layers of 
the South Pole atmosphere.
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P

● Raytracing:
● For a given transmitter receiver geometry we can always find the shortest 

possible path between them by minimizing the following expression:

Launching Rays from Air to Ice
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1) Transmitter altitude
2) Ice Layer Altitude
3) Antenna Depth
4) Total Horizontal 

Distance (THD) 
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Raytracing Time
● So a typical raytracing call involving air and ice takes around 0.05 

to 0.1 ms.
– Currently making the atmosphere takes around 22 ms.

● Calling the analytic raytracing function for all shower particles 
(~10^9) at all heights is still not feasible.
– A shower will take around from a week to a month to simulate. 

● Therefore, we have to move towards interpolation.
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Interpolation Method
● For a given antenna depth I make 2-D grid of:

– THD (Total Horizontal Distance)
– The altitude of the in-air transmitter

● For each grid position I do analytic raytracing and store:
– The initial launch angle of the ray
– The total optical path length of the ray in air and in ice
– The horizontal distance traveled by the ray in air and ice.
– The angle of incidence on the ice surface and the Fresnel 

coefficients associated with it.

● Linear interpolation is used to calculate a given raytrace 
parameter.
– It takes around 250 ns to do interpolation for each parameter.
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Adding Raytracing to CoREAS
● CoREAS uses end point formalism to calculate E-field emissions.

● In this formula, I use the following raytracing parameters: 
– Launch angles as the dot product angle 
– Optical path length of the ray for the value R
– The value of n is taken to be n at the emission point.

● Have yet to integrate Fresnel coefficient calculations to account for surface reflections.
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WHY DOES THE BOOSTFACTOR MATTER?
The end point formalism (arxiv.org/abs/1112.2126) :

When calculating as 1 − 𝑛𝛽 cos 𝜃 :
What n?
What 𝜃 ?

Previous studies (A. Timmermans, Ba. Thesis) show that a straight line approximation
might not be valid for very inclined geometries in air 

IN AIR BURSTS

12 july 2022

D. Van den Broeck
Radio propagation in non-uniform media

𝐵𝑜𝑜𝑠𝑡𝑓𝑎𝑐𝑡𝑜𝑟−1 𝜃𝑙𝑎𝑢𝑛𝑐ℎ
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WHAT ABOUT INCLINED SHOWERS?
IN AIR BURSTS

12 july 2022

D. Van den Broeck
Radio propagation in non-uniform media

The estimator with local n and launch angle works well here too! 
The others do not agree 𝑋𝑚𝑎𝑥
Similar results found by A.Timmermans

Dieder's ARENA 2022 Talk 

https://indico.cern.ch/event/826366/contributions/4880779/attachments/2456702/4210832/DiederVdBPropagationNonUniform.pdf
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Shower Footprint in Ice 
without B-field

● This is for a vertical shower

● The antennas placed in a plane at 
100 m depth below the ice sheet.

● The ice layer is at 3000 m altitude.

● The shower energy is 10^17 eV 
with a proton primary.

● As expected, the Cherenkov ring is 
clearly visible with no geomagnetic 
emission and the polarisation 
vectors point to the center.
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Shower Footprint- 
CoREAS(Air) and Ice

CoREAS
In air

In-ice 
100 m depth, Ice Layer at 3000 m

Vertical 
Shower, 
10^17 eV, 
Proton 
primary
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Vertical Shower, 
E 1e17 eV, 
Thinning ON,
Ice Sheet Altitude 
3000 m

Ch 7
(X,Y,Z)=
(-10,-10,-100) m

Ch 0
(X,Y,Z)=
(10,10,-200) m

In-Ice RayTracing vs 
CoREAS: E-fields

Geometry:

● Pulse shape is preserved in 
ice.

● Expected time delay in ice 
signals observed.

● Less power in E-fields in Ice
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Ch 7
(X,Y,Z)=
(-10,-10,-100) m

Ch 0
(X,Y,Z)=
(10,10,-200) m

In-Ice RayTracing vs 
CoREAS: E-fields

Geometry:

● Pulse shape is preserved in 
ice.

● Expected time delay in ice 
signals observed.

● More power in E-fields in Ice

Zenith 45 deg,
E 1e17 eV, 
Thinning ON,
Ice Sheet Altitude 
3000 m
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Ch 0
(X,Y,Z)=
(-10,-10,3200) m

Ch 7
(X,Y,Z)=
(10,10,3100) m

In-Air RayTracing vs 
CoREAS: E-fields

Geometry:

Vertical Shower, 
E 1e17 eV, 
Thinning ON

● Pulses almost identical for 
North and West components.

● Pulse structure significantly 
different for the Vertical 
component.
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Some things to keep in mind for interpolation 
implementation

● How to make/load the table for each antenna when the 
simulation is run in parallel?
– Load it from a file or load it directly in the memory.

● Since the tables can be big, the RAM can get filled up quickly.
– Have to work on optimizing RAM usage.
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Conclusion
● The in-ice and in-air raytracing codes are working well and giving good 

results.

● In the process of running checks and making sense of all results.
– Still have to include Fresnel coefficients in the calculations.
– Take into account Earth’s curvature in raytracing.

● Simulate in-air and in-ice emissions together in one simulation for a CR 
shower using CoREAS.
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Thank you!
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Interpolation Method
● θ (or the launch angle) has a step size of 0.1 deg and h has a step size of 10 m.

– θ starts off at 90.1 deg and ends at 180.0 deg.
– h starts off at 3000 m (the ice layer altitude) and ends at 100000 m.

● If the antenna depth changes we will need to make another 2-D grid for that.

● It takes around 60±2 s to make the whole grid. 

● For any given coordinate of (h,THD) 
– the closest h bins are calculated
– The corresponding range of THDs for the h bins are found and the closest THD bins are found.
– using the linear interpolation method the interpolation parameter value at the requested coordinate is calculated.
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Snell’s law

Each particular ray has its own 
value of L. Changing the initial 
launch angle changes the value L.
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● For exponential n(h) profiles the same concept as the previous slide is applicable.

● Based on Snell’s Law I find the incidence angles between the multiple layers in air 
and and the incident angle on ice:

● Once we know the initial launch angle we can calculate the value of L for that ray.
● This allows us to calculate the incident angle on all layers and also calculate the 

distance travelled in each layer.

Finding the angle of incidence between 
the multiple layers
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Transmitter 
depth

Initial launch angle

here

Raytracing-II
The function that describes the ray paths analytically is given by:

, here L is the initial condition of the ray.

Using Fermat’s Least time principle we can also calculate the time of propagation of the ray in ice:
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Vertical Shower, 
E 1e17 eV, 
Thinning ON,
Ice Sheet Altitude 
3000 m

Ch 7
(X,Y,Z)=
(-10,-10,-100)

Ch 0
(X,Y,Z)=
(10,10,-200)

In-Ice RayTracing 
ZHS vs ZHSx10:
E-fields
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Vertical Shower, 
E 1e17 eV, 
Thinning ON,
Ice Sheet Altitude 
3000 m

Ch 7
(X,Y,Z)=
(-10,-10,-100)

Ch 0
(X,Y,Z)=
(10,10,-200)

In-Ice RayTracing 
ZHS vs ZHSx0.1:
E-fields
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Shower Footprint- CoREAS(Air) 
and Ice (GeoPath)

CoREAS
In air

In-ice 
100 m depth, Ice Layer at 3000 m

Vertical 
Shower, 
10^17 eV, 
Proton 
primary
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Shower Footprint- CoREAS(Air) 
and Ice (OptPath)

CoREAS
In air

In-ice 
100 m depth, Ice Layer at 3000 m

Vertical 
Shower, 
10^17 eV, 
Proton 
primary
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Shower Footprint- CoREAS(Air) and 
Ice (OptPath) BfieldOff

CoREAS
In air

In-ice 
100 m depth, Ice Layer at 3000 m

Vertical 
Shower, 
10^17 eV, 
Proton 
primary
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