EPOS Hadronic Interaction Model : Past and Future

Tanguy Pierog

Karlsruhe Institute of Technology, Institut für Astroteilchenphysik, Karlsruhe, Germany

C8 Workshop, MPI, Heidelberg, Germany July the 14th 2022

High Energy Hadronic Interactions

General case : valid for pp if enough particles are produced !

Outline

EPOS LHC

- Energy sharing
- Parton multiple scattering
- Outshell remnants
- Screening, Shadowing and Strings
- Collective effects
- ➡ EPOS 3/4
- Core-Corona in EAS
- ➡ EPOS QGP ?

EPOS3/4

The EPOS Model

EPOS* is a parton model, with many binary parton-parton interactions, each one creating a parton ladder.

- Energy-sharing : for cross section calculation AND particle production
- Parton Multiple scattering
- Outshell remnants
- Screening and shadowing via unitarization and splitting
- Collective effects for dense systems

EPOS can be used for minimum bias hadronic interaction generation (h-p to A-B) from 100 GeV (lab) to 1000 TeV (cms) : used for air shower !

EPOS designed to be used for particle physics experiment analysis (SPS, RHIC, LHC) for pp or Heavy Ion

EPOS QGP

EPOS : History

Evolution of models by K. Werner et al. :

- ➡ VENUS (93) : soft physic
- NEXUS 2 (00): first realization of Parton-Based Gribov-Regge Theory (PBGRT) with soft, semi-hard and hard Pomerons
- NEXUS 3.97 (03) : enhanced diagrams in PBGRT and new remnant treatment
- EPOS 1.6 (06) : PBGRT + remnants + Effective treatment of higher order effect and high density effect + new diffraction ...
- ➡ EPOS 1.99 (09) : Correction of cross section and inelasticity for air showers.
- ➡ EPOS LHC (12) : Re-tune using LHC data and correction of effective flow.
- EPOS 2 (not released) : Real event-by-event hydro calculation (includ. pp)
- EPOS 3 (not released) : New saturation scale for proper jet cross-section
- EPOS 4 : 2020- (still under development)
 - New hard scattering calculation includingf heavy flavors
 - Soft + Factorisation and binary scaling for hard
 - 3D+1 viscous event-by-event hydro calculation (includ. pp)

EPOS QGP

EPOS : Parameters

Data used to constrain parameters (~100) :

- string fragmentation : e+e- data,
- hard Pomeron : DIS data,
- \rightarrow soft Pomeron and vertices : pp, π p,Kp, pA cross sections
- diffraction : pp low energy and LHC diffraction and multiplicity distributions
- excitation functions : multiplicity in pp from SPS to LHC,
- string ends and remnants : NA49 data
- collective and screening effects : RHIC and LHC

One set of parameters for all energies and system

not designed to be tuned by users

Parton-Based Gribov-Regge Theory

Energy sharing at the cross section level

- Energy shared between cut and uncut diagrams (Pomeron)
- Reduced number of elementary interactions
- Generalization to (h)A-B
- Particle production from momentum fraction matrix (Markov chain metropolis)

T. Pierog, KIT - 7/25

EPOS3/4

Number of cut Pomerons

Fluctuations reduced by energy sharing (mean can be changed by parameters)

Test at LEP

EPOS3/4

Core-Corona

EPOS QGP

Remnants

Forward particles mainly from projectile remnant

- At very low energy only particles from remnants
- At low energy (fixed target experiments) (SPS) strong mixing
- At intermediate energy (RHIC) mainly string contribution at mid-rapidity with tail of remnants.
- At high energy (LHC) only strings at midrapidity (baryon free)

Different contributions of particle production at different energies or rapidities

Basic Distributions

C8 – July 2022

T. Pierog, KIT - 11/25

High Density Core Formation

Heavy ion collisions or very high energy proton-proton scattering:

the usual procedure has to be modified, since the density of strings will be so high that they cannot possibly decay independently : core

EPOS3/4

Core in p-p

Detailed description can be achieved with core in pp

- → identified spectra: different strangeness between string (low) and stat. decay (high)
- \rightarrow p_t behavior driven by collective effects (statistical hadronization + flow)

 \rightarrow larger effect for multi-strange baryons (yield AND <p_>)

EPOS3/4

Saturation

Core-Corona

EPOS QGP

Limitations in EPOS LHC

- Good results at low/medium p, in Pb-p
- Problems for high p_t: no binary scaling
 - same correction for soft and hard scales

Solution = variable minimum for hard scale

C8 – July 2022

Introduce a different min. hard scale for each Pomeron

- Multiplicity dependent hard component (as observed @LHC)
- \bullet restore factorisation and binary scaling for high p_{t}
- \rightarrow intermediate p, due to flow based on real hydro simulations

mass splitting

C8 – July 2022

Real 3D Hydro

Particle ratio characteristic of collective flow effect.

10

₽₫⊄

Φın

2K2

 $\Lambda + \overline{\Lambda} (\times 2)$

+ 2 (x6)

Core-Corona Approach

- Mixing of core and corona hadronization needed to achieve detailed description of p-p data
 - Evolution of particle ratios from pp to PbPb
 - Particle correlations (ridge, Bose Einstein correlations)
 - Pt evolution, …
- Both hadronizations are universal but the fraction of each change with particle density

EPOS3/4

Core-Corona

EPOS QGP

Hadronization Models

2 models well established for 2 extreme cases

Important consequences for muon production in air showers !

Particle Densities in Air Showers

Is particle density in air shower high enough to expect core formation ?

- Core formation start quite early according to ALICE data
- Cosmic ray primary interaction likely to have 50% core at mid-rapidity !

Core-Corona appoach and CR

To test if a QGP like hadronization can account for the missing muon production in EAS simulations a core-corona approach can be artificially apply to any model

- Particle ratios from statistical model are known (tuned to PbPb) and fixed : core
- Initial particle ratios given by individual hadronic interaction models : corona
- → Using CONEX, EAS can be simulated mixing corona hadronization with an arbitrary fraction ω_{core} of core hadronization: $N_i = \omega_{\text{core}} N_i^{\text{core}} + (1 \omega_{\text{core}}) N_i^{\text{corona}}$

C8 – July 2022

C8 – July 2022

T. Pierog, KIT - 21/25

Collective effects

EPOS3/4

EPOS QGP

Modified EPOS with Extended Core

• Core in EPOS LHC appear too late

- Recent publication show the evolution of chemical composition as a function of multiplicity
- Large amount of (multi)strange baryons produced at lower multiplicity than predicted by EPOS LHC
- Create a new version EPOS QGP with more collective hadronization
 - Core created at lower energy density
 - More remnant hadronized with collective hadronization
 - Collective hadronization using grand canonical ensemble instead of microcanonical (closer to statistical decay) as in EPOS 4
 - Faster development than EPOS 4 and less changes (easier to track physical effect)

Preliminary Version with Minimum Constraints

C8 – July 2022

T. Pierog, KIT - 23/25

EPOS3/4

EPOS QGP for Air Showers

C8 – July 2022

T. Pierog, KIT - 24/25

Summary on EPOS

- EPOS important for EAS as only model comparable to all LHC data (heavy ions with collective effects)
- Hadronic interactions with EPOS 4:
 - Consistent treatment for all kind of system : final state depends on the energy used for each event (multiplicity) not only on the energy available (collective hadronization when density of particles is high)
 - Hydro on event-by-event basis (slow) or effective flow (fast) tune on real hydro
 - Pomeron mass and number dependent hard scale :

Improvement of hard events (jets) in MB

- Heavy flavor (charm and beauty)
- (very) long development time (and not compatible (yet) with EAS)
- Update of EPOS LHC with latest LHC results for EAS simulations on a smaller time scale

Collective effects

EPOS3/4

EPOS : Pomeron definition

- Theory based Pomeron definion
 - pQCD based so large increase at small x (no saturation)
 - produce too high cross section
 - corrections needed using enhanced diagrams (triple Pomeron vertex)
 - effective coupling vertex

Simplest case: e⁺e⁻ annihilation into quarks

EPOS QGP

Remnants

Free remnants in EPOS:

- from both diffractive or inelastic scattering
- \clubsuit excited state with P(M)~1/(M²)^{α}
- \clubsuit dominant contribution at low energy
- forward region at high energy
- depending on quark content and mass (excitation):
 - resonance
 - string
 - droplet (if #q>3)
 - string+droplet

Baryons and Remnants

Parton ladder string ends :

Problem of multi-strange baryons at low energy (Bleicher et al., Phys.Rev.Lett.88:202501,2002)

Baryon Production

C8 – July 2022

T. Pierog, KIT - 30/25

EPOS LHC

T. Pierog, KIT - 31/25

C8 – July 2022

Effective flow treatment

C8 – July 2022

T. Pierog, KIT - 32/25

EPOS LHC

Detailed description can be achieved

- identified spectra
- pt behavior driven by collective effects (statistical hadronization + flow)

C8 – July 2022

T. Pierog, KIT - 33/25

PbPb @ LHC

T. Pierog, KIT - 34/25

Correlations in PbPb@LHC

Fourier coefficient for most central events

