
Benchmarking CORSIKA 8

Nikolaos Karastathis, Pranav Sampathkumar and Maximilian
Reininghaus

for the CORSIKA 8 collaboration

CORSIKA 8Heidelberg 2022

2

CORSIKA 8

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

Outline
Heidelberg 2022

● 10 vertical hadronic showers

● 5 45 degrees em showers

● Runtime vs energy cut for hadronic showers

● Profiling

mailto:nikolaos.karastathis@kit.edu

Workstation specifications:

● CPU: AMD Ryzen Threadripper 2970WX 24-Core Processor
Base clock speed: 3GHz
Max clock speed: 4.2GHz
L3 cache: 64 MB

● RAM memory: 64 GB

Run specifications:

● C7: FFLAGS=-O2 CFLAGS=-O2 ./coconut
 – QGSJETII-04, URQMD 1.3cr

● C8: vertical_EAS example
 – logging set to WARN

 – CUTS were set to appropriate values in order to avoid crushes in PROPOSAL

 – Trackwriter is disabled

CORSIKA 8 Heidelberg 2022

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

mailto:nikolaos.karastathis@kit.edu

4

CORSIKA 8

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

Heidelberg 2022

Hadronic and EM showers were produced:

● branch: 502-examples-need-some-polishing
● commit:

94875ed461a9de73d06881ea0d83941833c99fb4
● random seeds were used
● examples:

vertical_EAS.cpp, em_shower.cpp

mailto:nikolaos.karastathis@kit.edu

5

CORSIKA 8

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

Heidelberg 2022Hadronic showers

mailto:nikolaos.karastathis@kit.edu

6

CORSIKA 8

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

Heidelberg 2022Hadronic showers

mailto:nikolaos.karastathis@kit.edu

7

CORSIKA 8

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

Heidelberg 2022EM showers

mailto:nikolaos.karastathis@kit.edu

8

CORSIKA 8

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

Heidelberg 2022EM showers

mailto:nikolaos.karastathis@kit.edu

9

CORSIKA 8

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

Heidelberg 2022Runtime vs energy cut - 40 hadronic showers

primary: p 1017 eV, vertical
C8: straight tracking, BetheBlochPDG
C7: ELMFLG = 0, compiled with -O2

LE/HE transition

❖ These
showers were
run by Max in
his station

mailto:nikolaos.karastathis@kit.edu

10

CORSIKA 8

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

Heidelberg 2022Profiling

Corsika details
• branch: 502-examples-need-some-polishing
• commit: 94875e
• example: em_shower.cpp
• 100 TeV, Vertical Shower, Trackwriter disabled

Environment (Pranav’s computer)
• Compilation tools: gcc=11.3.1, cmake=3.22.2
• OS: Fedora 35
• Processor: AMD Ryzen 7 PRO 3700 8-Core Processor (3.6GHz -
4.4GHz)
• Performance Analysis Tools: Valgrind=3.19, perf=5.18.4,
hotspot=1.3.0, kcachegrind=21.12.2

mailto:nikolaos.karastathis@kit.edu

11

CORSIKA 8

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

Heidelberg 2022Flame Graph

Flame Graph for CORSIKA8, this flamegraph helps us spot a few
important hotspot functions, which we can analyse further, such as
GetUpperLimit and MeanFreePath from PROPOSAL.

mailto:nikolaos.karastathis@kit.edu

12

CORSIKA 8

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

Heidelberg 2022Callcache information

Callee Map for MeanFreePath, we can see that while
MeanFreePath is being called 285M times, CubicSplines is being called
1.5B times, via MeanFreePath.

mailto:nikolaos.karastathis@kit.edu

13

CORSIKA 8

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

Heidelberg 2022Callcache information

Callgraph illustrating the pathways between MeanFreePath and
BiCubicSplies. The dominant pathway is highlighted.

mailto:nikolaos.karastathis@kit.edu

14

CORSIKA 8

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

Heidelberg 2022Callcache information

There are also other code pathways, which eventually lead to
BiCubicSplies which contribute for the additional 0.5B times.

mailto:nikolaos.karastathis@kit.edu

15

CORSIKA 8

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

Heidelberg 2022Callcache information

Callgraph for getUpperLimit, We dont see any immediate potential
for improvement. The number of calls dont jump too much anywhere for us
to spot infrastructural deficiencies.

mailto:nikolaos.karastathis@kit.edu

16

CORSIKA 8

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

Heidelberg 2022Callcache information

This probably calls for an algorithmic change, rather than an
infrastructural change. Maybe some form of tabulation, which can reduce
the calls to getUpperLimit.

mailto:nikolaos.karastathis@kit.edu

17

CORSIKA 8

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

Heidelberg 2022Callcache information

Another, hotspot in terms of timespent, is in the LeapFrog
algorithm. There is probably potential for both infrastructural and
algorithmic improvements here.

mailto:nikolaos.karastathis@kit.edu

18

CORSIKA 8

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

Heidelberg 2022Callcache information

At an infrastructure level, too many calls to memory management
routines like M_release. Maybe better way to allocate and deallocate
memory ? This was in release mode. So these are some non-trivial
allocations which couldnt be optimized by the compiler

mailto:nikolaos.karastathis@kit.edu

19

CORSIKA 8

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

Heidelberg 2022Potential Improvement?

At an Algorithmic level, the cubic solver seems to take a decent
chuck of time. We need to optimize it or avoid it altogether somehow.

mailto:nikolaos.karastathis@kit.edu

20

CORSIKA 8

Nikos Karastathis (nikolaos.karastathis@kit.edu) – Karlsruhe Institute of Technology

Summary
Heidelberg 2022

● Spotted three potential places for improvement, MeanFreePath,
GetUpperLimit and LeapFrog

● MeanFreePath - Probably requires a infrastructural code
change and a closer look into redundant calls.

● GetUpperLimit - Probably requires an algorithmic change, which
helps us avoid these calls

● LeapFrog - Not really obvious what sort of change is required. It
is probably some combination of both infrastructural and
algorithmic change. So that we reduce memory allocations, and
try to avoid the cubic solver or use it lesser.

Please, Playaround with these softwares yourself. A lot of
insight can be gained by looking at the callgraph and the
control-flow of the program.

mailto:nikolaos.karastathis@kit.edu

