

Accelerator input to air shower physics: status and future prospects

Hans Dembinski, TU Dortmund, Germany

CORSIKA 8 Workshop, July 2022, Heidelberg

Artist impression of air shower

Image credit: Rebecca Pitt, Discovering Particles, CC BY-ND-NC 2.0

Overview

- Cosmic-ray induced air showers are driven by hadronic cascades
- CORSIKA 8 should accurately predict
 - First two moments of muon number N_{μ} and X_{max}
 - Atmospheric neutrino flux
 - Radio/gamma ray production
- Need reference data and and good models of soft-QCD processes
 - Production of long-lived hadrons and π^0
 - Ratio of strange hadrons to unflavored
 - Charm production
- LHC/SPS experiments provide important reference data
 - Challenge: Limited information on forward hadron production
 - Very promising: p-O collisions planned at LHC in 2023/24

Air shower cascade

Haungs et al., JoP Conf. Ser. 632 (2015) 012011

Muon deficit in simulated showers

PoS(ICRC2021)349

$$z_{\rm mass} \approx \frac{\langle \ln A \rangle}{\ln 56}$$

- Line model with slope fitted to $\Delta z = z z_{mass}$
- Slope is 8σ (10 σ) away from zero for EPOS-LHC (QGSJet-II.04)
- Onset of deviation around 40 PeV corresponds to $\sqrt{s} \sim 8$ TeV; in reach of LHC

Air showers and QCD

R. Ulrich, R. Engel, M. Unger, PRD 83 (2011) 054026

- Modify hadronic features in SIBYLL-2.1 and other models with energy-dependent factor *f*(*E*)
- Study effect in 10^{19.5} eV shower simulations

- cross-sections inelastic cross-section of all interactions
- hadron multiplicity total number of secondary hadrons
- **elasticity** = $E_{\text{leading}}/E_{\text{all}}$
- π^0 fraction

From shower muons to QCD

- Number of muons produced, N_{μ}
 - Very sensitive to π^0 fraction
 - Sensitive to hadron multiplicity

- Depth of shower maximum, X_{max}
 - Very sensitive to cross-section
 - Sensitive to hadron multiplicity

From shower muons to QCD

What to measure at the LHC

- Inelastic cross-section
- Production of long-lived hadrons and π^0
 - Hadron multiplicity
 - Energy ratio R
- Hadron elasticity
 - Fluctuations of X_{max} and N_{μ}
- Forward charm production (D⁰)
- Need pp, pPb, and pO data to understand nuclear effects

Large Hadron Collider (LHC)

Hans Dembinski | TU Dortmund

LHC collision systems

Collision systems at the LHC

LHC collision systems

p-O collisions mimic air shower interactions

n=3

LHC collision systems

Fixed target data at sub-TeV (LHCb only)

- p+(p,...,O,N,...) @ 0.11 TeV
- Pb+(p,...,O,N,...) @ 0.07 TeV
- O+O, O+p @ 0.08 TeV (in Run 3)

p-O collisions mimic air shower interactions

 π -N and π -O .

 $\pi^+\pi^-$

n=2

n=3

Inelastic cross-section

TOTEM, EPJC (2019) 79:103 (see references therein for ALICE, ATLAS, CMS, LHCb)

Importance of forward acceptance

J. Albrecht, HD, et al., Astrophys. Space. Sci. **367**, 27 (2022) PoS(ICRC2021)463 in arXiv:2112.11761

Importance of forward acceptance

Y.S. Jeong et al. + Honda et al. from L. Anchordoqui et al. arXiv:2109.10905 Conventional flux: v_{μ} from light flavor Prompt flux: v_{μ} from open charm and beauty

M. Garzelli: "We mostly need charm data at y = 4 to 7"

ATLAS vs. LHCb

ATLAS: Symmetric spectrometer

• Optimized for study of new heavy particles

LHC experiments and Muon Puzzle

arXiv:2105.06148

Forward charged particle spectra

- Data available up to |η| = 6.4 in p-p and partially in p-Pb ALICE, Eur.Phys.J.C 77 (2017) 12 CMS & TOTEM, Eur.Phys.J.C 74 (2014) 10, 3053 LHCb, JHEP 01 (2022) 166 ...
- Models agree at mid-rapidity in p-p, but not in the forward region
- Models do not agree on extrapolation from p-p to p-O; new LHC data will fix this

QCD factorisation

- Difficult to change *R* within standard QCD
 - String fragmentation universal \rightarrow hadron ratios universal
 - Iso-spin symmetry: $\pi^+: \pi^-: \pi^0 \sim 1: 1: 1$

Probabilities to generate quark pairs independent of collision details

QCD factorisation breaking effects

- Collinear framework cannot describe rich phenomenology found in pPb at LHC
 - Strangeness enhancement & collective fluid-like phenomena observed in pPb and pp
 - Enhanced strangeness and baryon production observed at mid-rapidity (Muon Puzzle!)
- Alternative hadronization models
 - Become important when density of produced partons is high: heavy-ion collisions, high-energy collisions → collisions in air showers!
 - Not constrained by data from ee colliders
 - LHCb data provides evidence for alternatives models in forward region
- Core-Corona model (e.g. EPOS)
 - Statistical hadronization from Quark Gluon Plasma (QGP) at midrapidity (core)
 - String and remnant fragmentation in the forward region (corona)
- String-string interactions (e.g. DIPSY)
 - Strings overlapping in space-time interact with each other
- Quark coalescence model
 - Hadrons directly formed from pairs of quarks produced in collision

QCD factorisation breaking effects

Enhanced forward baryon and ρ^0 production in π -air collisions

Observed at NA61/SHINE

- More baryons and $\rho^0 \rightarrow \text{less } \pi^0$ \rightarrow more muons in air showers
- Large increase of muon number in ٠ SIBYLL model, but not enough to solve muon puzzle
- Effect also included by EPOS (core-corona model)

Strangeness enhancement

Enhanced strangeness production observed at mid-rapidity

- ALICE discovered universal enhancement of strangeness production in *pp*, *p*Pb, PbPb ALICE, Nature Phys. 13 (2017) 535
- More strangeness → less π⁰
 → more muons in air showers
 R ≈ 0.41 0.45 (low density)
 R ≈ 0.34 (high density) (≈ -20 %!)

arXiv:1902.09265 arXiv:2202.03095

- Enhancement seems to depend **only** on density of charged particles → predictive power!
- Does it extend forward to $\eta \gg 1?$
 - Data from CMS inconclusive CMS, Eur.Phys.J.C 79 (2019) 11, 893
 - Many studies started in LHCb; first results next slide

Forward strangeness enhancement

LHCb-PAPER-2022-001, arXiv:2204.13042

- B_s⁰/B⁰ ratio proxy for probability ratio to form hadron with **d** or s quark (b quark irrelevant)
- **3.4σ evidence** for multiplicity-dependent strangeness enhancement
- No trend if ratio plotted vs. backward-going tracks
- Effect local in rapidity?

Direct very forward measurement of R

*R*_{reco} > *R* here, because of detector effects

Forward identified hadron spectra

- Just published: precise measurements of charged particle density at 1-2 % level
- *R* constrained by π , K, p ratios measured in p-p at 0.9 and 7 TeV; analysis of 13 TeV data in progress
- Potential of fixed target studies: \bar{p} production in p-He at 0.11 TeV LHCb, PRL 121 (2018) 22, 222001

Forward charged particle production

LHCb PRL 128 (2022) 14, 142004 p-p, p-Pb @ 5 TeV

- Nuclear modification
 - Suppression at small pT in forward region
 - Enhancement in backward region
- $R_{p
 m Pb}(\eta, p_{
 m T}) \equiv rac{1}{A} rac{{
 m d}^2 \sigma_{p
 m Pb}^{
 m ch}(\eta, p_{
 m T})/{
 m d} p_{
 m T} {
 m d} \eta}{{
 m d}^2 \sigma_{pp}^{
 m ch}(\eta, p_{
 m T})/{
 m d} p_{
 m T} {
 m d} \eta}$
- Collinear model not consistent with backward region

Forward π^0 production

LHCb-PAPER-2021-053, arXiv:2204.10608 pPb 8.16 TeV

Special π^0 reconstruction

- Photon 1 detected in ECal
- Photon 2 detected as converted ee pair
- Better momentum resolution
- No bias from overlapping ECal hits

- Total uncertainty < 6 % in most bins
- Forward suppression similar to that of charged particles

Forward D and B production

- LHCb designed to study forward heavy-flavor production
- Detailed data on forward D and B meson production
 - Forward open charm production in p-p, p-Pb
 - LHCb: Nucl.Phys.B 871 (2013) 1-20; JHEP 10 (2017) 090; ...
 - Forward open beauty production in p-p, p-Pb
 - LHCb: JHEP 08 (2013) 117, PRL 118 (2017) 5, 052002;
 PRD 99 (2019) 5, 052011; ...
 - Constraints on gluon PDF in nucleon up to $x = 10^{-6}$

PROSA, EPJ C 75 (2015) 8, 396

Fixed-target experiments with LHCb

- SMOG device at LHCb
 - Injects noble gas into vertex detector
 - Former precision luminosity record LHCb, JINST 9 (2014) P12005
 - Physics potential: Study nuclear effects at $\sqrt{s} = 0.1$ TeV with different targets
- Anti-proton production in p-He
 - LHCb, PRL 121 (2018) 222001
 - LHCB-PAPER-2022-006-002
 - Used to predict background for DM searches in cosmic \bar{p} /p ratio
- First look at charm production in p-He, p-Ar
 - LHCb, PRL 122 (2019) 13, 132002
 - Study potential intrinsic charm in proton
- SMOG2 Upgrade for Run 3 CERN-LHCC-2019-005
 - Window-less storage cell
 - Well-controlled gas density, 100x higher
 - Non-noble gases possible: oxygen, nitrogen!

Zero-degree measurements

- LHCf: zero degree calorimeters ($\eta > 8$) around ATLAS to detect neutral particles
- RHICf: Similar detector at RHIC to study p-p at 0.51 TeV PoS(ICRC2021)301

Zero-degree measurements with LHCf

- LHCf constraints R by photon, π^0 , neutron production cross-sections in p-p, p-Pb
 - LHCf, PRD 94 (2016) 3, 032007, LHCf, JHEP 07 (2020) 016, ...
- Plans to study strangeness production via $K_{S}^{0} \rightarrow 4\gamma$ in Run 3 $Po_{A}^{S}(1CRC2.921)301$

Summary & outlook

- Cosmic-ray induced air showers are driven by hadronic cascades
- Primarily need reference data at y = 4 to 10 for air showers
- LHC/SPS experiments provide important reference data
 - Extremely precise pp cross-section
 - NA61/SHINE results on ρ^0 and anti-p production in $\pi\text{-}C$
 - ALICE and LHCb results on strangeness enhancement
 - LHCb precision results on forward prodution of long-lived hadrons and π^{0}
 - LHCf results on π^0 and neutron production, neutron-elasticity
- LHC data show QCD factorization breaking effects important for air showers
- Collaborative Research Center 1491 (Dortmund, Bochum, Wuppertal) funded
 - Fully exploit LHCb data
 - Tune generators used in astroparticle simulations with collider and air shower data
- LHC outlook
 - Measurements with p-O collisions in 2023/24
 - Forward strangeness production with LHCf
 - Forward physics facility (FPF)
 - FoCal, forward calorimeter for ALICE
 - Forward calorimeter for LHCb?

Predictive power of universality

- Multiplicity increases with *number of nucleons* and with *sqrt(s)*
- Average p-air collision at sqrt(s) = 100 TeV $dN_{ch}/d\eta \approx 80$
- Peripheral Pb-Pb collisions at the LHC sqrt(s) = 2.76 TeV $dN_{ch}/d\eta \approx 80$
- If universality holds for forward production: Predict collisions of *lighter nuclei at energies beyond the LHC* using data from *heavier nuclei at LHC energies*

