
 1

Propagation

Maximilian Reininghaus
CORSIKA 8 Workshop

2022-07-13

 2

CORSIKA 8 does...
● particle propagation*
● event generation
● bookkeeping

*propagation: solving equations of motion, considering
both deterministic and probabilistic constraints

 3

In the beginning
● life was easy:

– no magnetic fields
– no energy loss
– rectilinear motion, constant momentum

● lifetime & cross-section constant, sampling from exp.
● quadratic eq. to calculate intersections
● difficult aspect: grammage integration in curved atmosphere

 4

energy losses added
● variation of lifetime & cross-section
● initial sample not accurate anymore
● step-length limitation introduced to limit e-loss to < X% per step

– e-loss process’s responsibility, but doesn’t know about
cross-section/lifetime

– e-loss calculation happens effectively twice
● e-loss does not know about energy cut, tracks can be too long

(→ longitudinal profiles)

 5

magnetic fields added
● lateral/angular displacement depends on step-length
● intersections: step-length depends on displacement
● solution: combine equations, requires solving quartic equations
● simplifications necessary:

– B evaluated at start of track
– direction vector not normalized

● energy loss not considered (constant gyroradius)

 6

magnetic fields added
● grammage calculation still with rectilinear path

in initial direction
● step-length limitation to ensure

deflection < 0.01 rad

 7

New developments: Step class
● particle.getPostion(), getMomentum(),

etc. confusing (before/after step?) for developers
● particle.setXY() potentially overwritten
● Step class keeps keeps pre/post-step information
● adds clarity, but doesn’t really help with the

fundamental problems

 8

Sampling problem
● we sample decay time, interaction length
● select minimum: conversion to length

using current particle state
– non-const. velocity & curvature not taken into

account

 9

New proposal
● attempt to address all aspects consistently and in a

combined way
● still keep flexibility & modularity
● only possible on differential level:

change of state = sum of individual terms
● solve ODE system numerically with adaptive algorithm

– should find trade-off between runtime/precision

 10

New proposal
● state (or equiv. representation)
● example equations of motion

free propagation mag. deflection el. field ioniz. losses

● in general

 11

Implementation
● doContinuous(Step)
● DiffParticleState process.getDiffState(ParticleState const&)

– ParticleState: only local information (pos., mom., time)
– DiffParticleState: change,

● sum over all contributions
● feed into (adaptive) ODE solver (e.g. some Runge-Kutta integrator)
● while solving, watch out for terminating conditions (cuts, boundaries)

– inspired by scipy.integrate.solve_ivp "events"
● after integration, complete trajectory is available

– fed into "observing" processes

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivp

 12

Independent variable
● What is the best independent variable,

time, distance / arc length, grammage,… ?
● Ideally the one with cuts, e.g. energy

– but we have several…

t

E

forbidden
Ecut

?

t

-E

 13

What about sampling?

Survival probability (i.e. not undergoing an interaction/decay from A → B)
fulfills:

Non-negative
hazard function

solution:

Ps = complementary cumulative distribution function
distributed uniformly → inverse sampling

 14

Sampling: alternatives

treatment like a cut:
1) sample uniform u*

2) integrate eq. of motion (yielding s(t))

3) stop as soon as

change of independent variable:

draw u* and integrate eq. of motion from
u = 0 to u = u*

 15

Advantages
● no more inconsistencies
● grammage calculation unnecessary

(arbitrary density profiles possible!)
● electric fields straight-forward to add

 16

Issues
● performance impact unknown
● unit system prevents usage of off-the-shelf

ODE solver libraries (boost::odeint)
● treatment of multiple scattering consistent with

constraints

 17

Summary
● Propagation as of now is a mess;

responsibilities spread out; difficult to enhance
● restructuring necessary on basis of solid formal

foundations
● ODE-based solution can solve most issues
● some work already done in MR 322

https://gitlab.iap.kit.edu/AirShowerPhysics/corsika/-/merge_requests/322

 18

Supplementary material

 19

Example: MIP muon, 1D

 20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

