
E5a/ 
Physik

How to gain single-thread performance: 
Instruction pipelines, CPU cache 

optimisation, and SIMD
Hans Dembinski, TU Dortmund

CORSIKA 8 Workshop, July 2022, Heidelberg



E5a/ 
Physik

Take-home message
• Single-instruction-multiple-data (SIMD) give great single-

thread performance
– Up to 8x on current processors
– Calculations in float precision 2x as fast as double precision
– Orthogonal to parallelization via multi-threading

• Structs of arrays often faster than arrays of structs
• Let compiler write SIMD code for you
• CPU optimization is complex and unintuitive:

Measure performance, do not guess!

Hans Dembinski 2



E5a/ 
Physik

Python, Numpy, and Numba
• Code examples here are Python, compiled with Numba

– Numba makes optimal use of available SIMD instructions for your CPU
– Numpy may not use all SIMD instructions unless self-compiled,

interpreter still runs in between array operations

• Results apply to C++ as well
– Numba compiles numerical code with LLVM using LLVM optimizer

that is also used by clang
– Speed of Numba-compiled functions is on par with optimized C++ 

Hans Dembinski 3



E5a/ 
Physik

SIMD: Single-instruction-multiple-data

Decora on Wikipedia, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=30547507

Decora on Wikipedia, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=30547549

• Instructions sets: MMX 1997, 3DNow! 1998, SSE (2, 3, 4) 1999-2008, AVX (2, 512) 2011-2016
• Compiler support for AVX-512: gcc 4.9+, clang-3.9+, icc-15.0.1+
• Vectorized operations: add, sub, mul, div, min, max, mov, sqrt, ...

Hans Dembinski 4



E5a/ 
Physik

Array of struct vs. struct of arrays

• Array of structs usually the intuitive design choice, but...
• SOA often more efficient (but measure to make sure)
• SIMD instructions most efficient if arguments adjacent in memory

Array of structs (AOS) memory layout: x1, y1, z1, x2, y2, z2, ...
Struct of arrays (SOA) memory layout: x1, x2, ..., y1, y2, ..., z1, z2, ...

Hans Dembinski 5



E5a/ 
Physik

Motivating example
• Particle: 3 position coordinates, 3 momentum coordinates
• Task: Move location of a particle along its current momentum by step

• Naive implementation
• Loop over particles
• Compute displacement vector
• Add to location

• Not SIMD efficient: only 3 mul and 3 add can be vectorized per iteration

Hans Dembinski 6



E5a/ 
Physik

Motivating example
• SIMD-friendly improved version

• Do all muls first (creating temporary arrays)
• Then do all adds
• Then do all sqrts
• More efficient without modifying data structures

• Still inefficient, because px1, px2, ... not adjacent in memory (cache misses)

Hans Dembinski 7



E5a/ 
Physik

Motivating example
• Most SIMD-friendly version with SOA instead of AOS

• All operations vectorized: mul, add, div, sqrt
• All operation arguments adjacent in memory, except for add

• Creates several temporary arrays: slow/bad, but fixed cost
• Potential for further optimization: process particles in fixed-size chunks

to use temporary arrays of fixed that fit in L1 cache

Hans Dembinski 8



E5a/ 
Physik

Benchmark
• 2.8 GHz Quad-Core Intel Core i7, Numba 0.55.1
• move_soa up to 39x faster than naive implementation

• Peak efficiency for chunks of 400 to 10000 particles processed at once;
depends on size of L1 cache and single vs. double precision

• Peak efficiency can be reached for larger arrays by processing particles in chunks
• move_aos_improved and move_soa profit from calculation in single precision

Hans Dembinski 9



E5a/ 
Physik

Usage of SIMD instructions
• Numba allows one to inspect compiled assembler
• Compare number of SIMD instructions

only move_soa profits from
vectorized sqrt

move_soa uses more aligned mov

move_aos cannot use vectorized div

cvtsi2sdq: convert int to double
vpermilpd: permute pairs of doubles

move_aos also uses many SIMD instructions, nevertheless very inefficient

Hans Dembinski 10

No fused multiply-add instructions,
because associative math not enabled
(but does not improve this code)



E5a/ 
Physik

Summary
• Things to consider to get fast code

– Measure! Measure! Measure!
– Optimize use of SIMD instructions, CPU cache, CPU instruction pipelines
– Avoid frequent memory allocations (infrequent are ok, small fixed buffers are ok)
– Calculate in single precision if feasible (may require numerically stable algorithms)
– Let compile write SIMD instructions for you
– div slow compared to mul; replace div with mul if possible (or see next point)
– Enable associative math (reassoc, contract, arcp); should be safe, but check results

• Rules-of-thumb (but don't trust them, measure)
– "Local parallelism": Organize code so same Op is applied to adjacent values in memory
– Calculating with arrays is good (Numpy style)
– SOA often outperforms naive AOS

Jim Pivarsky: "If you don't use multi-threading, another process can use the extra threads.
If you don't use SIMD instructions, no one else can use them."

Hans Dembinski 11


